Храповый привод. Назначение и принцип работы храпового механизма

И его частей: храпового колеса и собачки.

Расчет храпового механизма

Наиболее опасным для элементов останова является положение, когда собачка упирается в вершину зуба храпового колеса (рис. 1, б). Так как зацепление зубьев с собачкой происходит с некоторым ударом, то кромки зуба колеса и собачки сминаются. Прочность кромок определяют по уравнению:

где P – окружная сила, H; b – ширина колеса, см; [q] – допускаемое линейное давление с учетом динамического характера нагружения, Н/см (значения [q] для некоторых материалов приведены в таблице 1).

Храповой механизм

Рис. 1: а - схема останова; б - расчет собачки

Окружную силу определяют из уравнения:

где D - внешний диаметр храпового колеса; z - число зубьев храпового колеса; m - модуль зацепления храпового колеса; Mк - крутящий момент, действующий на валу храпового колеса.

Параметры для расчета храпового соединения


Табл. 1: Примечание. Значения [q] соответствуют механизмам для 1, 2 и 3-й групп режимов работы. Для более напряженных режимов эти значения должны быть не ниже 25-30%.

Расчет храпового колеса

Соотношение между шириной зуба b и модулем m определяется коэффициентом ψ=b/m, значения которого даны в таблице 1. Бόльшие значения коэффициента ψ принимают для , работающих со значительными ударными нагрузками. Ширину собачки при нимают на 2-4 мм шире зуба храпового колеса, чтобы компенсировать возможные неточности монтажа. Используя уравнения, приведенные выше, получаем выражение для модуля колеса:

Если число зубьев неизвестно, а известен диаметр храпового колеса, то удобнее пользоваться выражением:

При модуле храпового колеса m≥6 мм можно ограничится проверкой зуба по изгибу. Плоскость излома зуба (рис. 1, б) отстоит на расстоянии h = m от вершины зуба. Высоту расчетного сечения зуба храпового колеса с внешним зацеплением принимают a = 1,5m. Тогда момент, изгибающий зуб:

Момент сопротивления изгибу при рассмотрении зуба как балки, закрепленной с одного конца:

Напряжение от изгиба должно удовлетворять неравенству:

Принимая допускаемые напряжения [σ и ] = σ в /n для чугунов и [σ и ] = σ т /n для сталей, где значения n указаны в таблице 1, получаем выражение для модуля:

При внутреннем зацеплении зубья храпового колеса значительно прочнее, поскольку в этом случае высота расчетного сечения зуба a = 3m. Модуль определяют из выражения:

Расчет собачки храпового механизма

Собачку изготовляют обычно из стали 40Х, термообработанной (см. ) до твердости не ниже HRC 48-50. Чтобы обеспечить надежную работу соединений, собачка прижимается к храповому колесу пружиной (рис. 2, а, б) или силой тяжести специального груза (рис. 2, в). Ось вращения собачки устанавливают в таком месте, чтобы угол между прямыми, проведенными от оси колеса и оси собачки в точку контакта собачки с колесом, был близок к 90°

Работа храпового механизма

Поверхность зуба колеса, упирающуюся в собачку, делают плоской. При вращении храпового колеса в направлении, соответствующем подъему груза, собачка свободно скользит по наклонным поверхностям зубьев.

Конструкции собачек с принудительным включением


Рис. 2

Если направление вращения колеса изменяется на противоположное, то собачка, упираясь в верхнюю кромку зуба колеса, соскальзывает во впадину и прижимается к рабочей грани зуба всей торцевой поверхностью, создавая необходимый упор. При этом на собачку от окружной силы P будут действовать сила нормального давления N = Pcosα и сила R = Psinα, направленная вдоль рабочей грани зуба и стремящаяся сдвинуть собачку к основанию зуба (рис. 1, б). Кроме того, на собачку действуют сила трения fN вдоль рабочей грани и момент трения Pf ı d/2 в опоре O ı , препятствующие входу собачки в зацепление (здесь f ı – коэффициент трения между собачкой и ее осью, имеющей диаметр d). Приведенная к плоскости рабочей грани зуба сила трения от момента трения на оси собачки выражается уравнением:

Если пренебречь влиянием силы тяжести собачки и силы пружины, способствующих созданию зацепления, то для обеспечения входа собачки в зацепление с зубом должно быть удовлетворено неравенство:

откуда после преобразований получаем:

то есть беспрепятственное движение собачки к основанию зуба колеса будет обеспечено, если угол α отклонения передней грани зуба колеса будет больше приведенного угла трения собачки по зубу храпового колеса с учетом коэффициентов трения f и f ı и геометрии зацепления. Нормально на построение профиля зубьев храпового колеса при наружном и внутреннем зацеплении предусмотрен угол α = 20°, что учитывает и влияние трения в опоре O ı и возможное загрязнение, и повреждение контактных поверхностей зуба колеса и собачки.

Собачка воспринимает сжимающие, растягивающие и изгибающие нагрузки. Расчет ведут при положении собачки, упертой концом в кромку зуба колеса (рис. 1, б). Так, при сжатой собачке напряжение в опасном сечении:

где В – ширина собачки; [σ и ] с =σ т /n – допускаемое напряжение; n=5 – запас прочности.

Для прерывистого перемещения рабочих органов станков используют механизмы периодического действия, которые за часть полного периода (цикла) своей работы сообщают исполнительному механизму прерывистое движение, повторяющееся в каждом цикле. Такие устройства необходимы для подачи стола на строгальных и долбежных станках, поворота многоинструментальных головок, поперечной подачи шлифовальной бабки, поворота нарезаемого зубчатого колеса на следующий зуб и т. д. Во всех указанных случаях рабочий орган станка совершает в определенный момент прерывистое перемещение. Обычно для периодических прерывистых движений узлов и деталей станков применяются следующие механизмы: храповые, кулачковые, мальтийские, с муфтами обгона, электрического действия, гидравлического и пневматического действий.

Храповые зубчатые механизмы подразделяются на механизмы с наружным зацеплением (односторонние и двусторонние) и механизмы с торцовым зацеплением. Храповые механизмы применяются для получения периодических (прерывистых) движений подач в строгальных и долбежных станках, поворотов револьверных головок, цикличных движений в автоматах. Они удобны в тех случаях, когда периодические перемещения строго ограничены временем перебега или обратного хода резца.

Основные схемы храповых механизмов показаны на рис. 39. Ведущим звеном является собачка 1, совершающая возвратно-качательное движение, а ведомым - храповое колесо 2, которое может быть с наружным (рис. 39, а), внутренним (рис. 39, б) и торцовым (рис. 39, в) зацеплениям и. При каждом цикле качания собачка поворачивает храповое колесо на заданное число зубьев и отходит в исходное положение, проскальзывая по зубьям храповика.

В механизме с наружным храповым колесом (см. рис. 39, а) при равномерном вращении кривошипа К, связанного с ним шатуна Ш Н рычаг Р Г получает непрерывное качательное движение относительно точки 0 2 . С рычагом Р Г связана собачка 1, упирающаяся в зубья колеса z 2 . П ри качании коромысла по стрелке, а-б (в сторону б) собачка приподнимается, скользит по спинкам зубьев и колесо не поворачивается. Принцип действия других конструкций аналогичен.

На рис. 39, г показан храповой механизм с поршневым приводом, содержащим цилиндр Ц, поршень П и шатун Ш Н. Храповые колеса и собачки изготовляются из сталей 15Х, 20Х, которые цементируются и закаливаются.

Основные размеры храповых колес (мм):

где D - наружный диаметр храпового колеса, мм; m - модуль, мм; z - число зубьев храпового колеса; Р - шаг, мм; α - угол поворота храпового колеса, градус; α 1 - число зубьев, захватываемых собачкой.

Кулачковые механизмы по виду движения разделяются на механизмы радиального и аксиального движения.

Наибольшее распространение получили плоские кулачковые механизмы, которыми легко осуществлять разнообразные функции управления при сравнительной компактности и несложной конструкции. Через плоские кулачковые механизмы преобразуется вращательное движение кулачка в поступательное движение толкателя. В механизмах с цилиндрическими кулачками барабанного типа (рис. 40, а) или торцового типа (рис. 40, б) ведущим звеном является кулачок 1 с пазом, по которому перемещается ролик толкателя 2. Такие механизмы применяются в станках-автоматах и полуавтоматах для осуществления автоматического цикла работы. Максимальная длина хода (по кривой кулачка) для барабанных кулачков составляет до 300 мм, для дисковых плоских кулачков 100-120 мм.

Принцип работы дискового кулачка (рис. 40, в) торцового типа состоит в следующем. Дисковый кулачок 1 равномерно вращается от привода вокруг оси О 1 . На поверхность профильного кулачка опирается ролик 2 с рычажным механизмом, заканчивающимся ползуном С, связанным с рабочим органом Р 0 . При равномерном вращении ролик 2 будет качаться соответственно профилю кулачка и через рычажный механизм, и ползун С передает прямолинейное возвратно-поступательное движение рабочему органу Р 0 . Материалами для кулачков обычно служат стали 50 и 40Х с поверхностной закалкой, при нагреве токами высокой частоты (ТВЧ) и закалке до твердости НRС 52-58.

Мальтийские механизмы . На рис. 41, а изображена схема мальтийского механизма, где ведущим звеном является вал I с кривошипом 1, а ведомым шестипазовый диск 2 - мальтийский крест, жестко закрепленный на валу II. При каждом обороте кривошипного вала I палец кривошипа 1 входит в один из пазов мальтийского креста и сообщает ему прерывистый поворот на угол 2α = 360°/z, где z - число пазов креста. Для плавного поворота креста, без жестких ударов в начале и конце поворота, должно удовлетворяться условие α + β = 90°, где β - половина центрального угла пальца креста.

На рис. 41, б изображен мальтийский механизм, состоящий из кривошипа и креста, его передаточное отношение зависит от числа пазов креста, которых может быть от 3 до 8:

В четырехпозиционном мальтийском механизме при равномерном вращении кривошипа 2, закрепленный на нем ролик 1 в определенный момент входит в один из четырех пазов мальтийского креста 4 и поворачивает его на 90°. За каждый последующий полный оборот кривошипа 2 вал с мальтийским крестом сделает только 1/4 оборота. Диск 3, жестко связанный с кривошипом, служит для фиксации положения креста в каждой из его четырех позиций.

Фиксирующие устройства. Многие перемещаемые узлы и детали станков при их установке в рабочее положение должны точно координироваться относительно других узлов и деталей станка. Для этого применяют фиксаторы. Круглый конический фиксатор (рис. 42, а) дает точную фиксацию, так как зазор между коническими поверхностями штифта 1 и втулки 2 отсутствует. Плоский конический фиксатор (рис. 42,6) обеспечивает большую жесткость и точность фиксации. Клин 1 подтягивается винтом 2 для устранения зазора между корпусом 3 и фиксатором 4. Фиксаторы применяют, например, для фиксации в рабочее положение поворотной револьверной головки на токарно-револьверном станке или автомате, для обеспечения соосности осей шпинделя и соответствующего гнезда револьверной головки, для установки режущего инструмента. Поворотный шпиндельный блок многорезцового токарного автомата должен точно координироваться относительно режущих инструментов так, чтобы прутковые и инструментальные шпиндели располагались соосно. Фиксаторы также необходимы для поворотных столов, делительных и других устройств.

Механизмы обгона являются разновидностью дифференциальных механизмов. Их применяют в тех случаях, когда необходимо передавать два вращательных движения от двух независимых источников на один вал, а также используют для обеспечения медленных рабочих и быстрых холостых движений. Механизмы обгона конструируют в виде храповых, роликовых или шариковых муфт.

Колесо 2 храповой муфты обгона (рис. 43, а) получает медленное вращение РХ (рабочий ход) против часовой стрелки. Оно свободно сидит на валу 4 и имеет на пальце собачку 3. Храповое колесо 1 при помощи шпонки жестко посажено на вал, который может быстро вращаться в том же направлении со скоростью XX (холостой ход). При рабочем ходе колесо 2 через собачку 3 вращает храповое колесо 1, ас ним и вал 4. При включении холостого хода от отдельного электродвигателя или другого устройства вал 4 получает быстрое вращение. В этом случае храповик будет обгонять собачку, и тогда медленное движение от колеса 2 на вал передаваться не будет.

Колесо 2 роликовой муфты обгона (рис. 43, б) свободно сидит на диске 3 с угловыми вырезами, в которые помещены ролики 1.

Контакт роликов с кольцом осуществляется подпружиненными пальцами 4. Диск получает быстрое, а кольцо медленное движение в одном направлении. Кольцо 2 непрерывно медленно вращается и увлекает за собой ролики 1, которые, перекатываясь, заклиниваются в угловом пазу между кольцом и диском 3, который получает таким образом медленное вращение. При этом можно сообщить быстрое вращение валу, несущему диск 3, который, обгоняя кольцо 2, расклинивает ролики 1.

Муфты обгона используют в токарных, многорезцовых, сверлильных и других станках для передачи рабочих и ускоренных движений, а также для ручной подачи и других целей.

Храповик коленчатого вала является давно известным механизмом, который используется не только в автомобилестроении, но и во многих отраслях промышленности. Первое зафиксированное историческое упоминание храпового механизма относится к войнам Древней Греции. Его использовали в арбалетной технике. При натягивании тетевы, храповик предотвращал соскальзывание её в обратную сторону.

Сегодня он выступает в качестве составного элемента различных механизмов и машин. Храповой механизм широко применяется в устройстве турникетов, домкратов, лебедочных механизмах и многих других. Также он нашел применение в коленчатых валах.

Храповик представляет собой механизм прерывистого движения, включающий несколько составных частей. Его основным предназначением является способность преобразовывать движения возвратно-вращательного характера в прерывистое вращение исключительно в одном направлении. Иными словами, храповик предотвращает то вращение оси, которое происходит против заданного направления.

Механизм устройства храповика представлен зубчатым колесом, зубцы которого не являются симметричными. Они оснащены упором с одной из сторон. Предотвращение обратного вращения достигается за счет собачки, прижимаемой к зубчатому колесу. Собачка может прижиматься двумя способами: наиболее часто собачка прижимается к зубчатому колесу при помощи пружины, резинового кольца, но есть и другой вариант — прижатие посредством собственного веса.

Собачка соединена с коромыслом, которое совершает раскачивающиеся движения неподалеку от центра храпового колеса, подвижным соединением. Она необходима для того, чтобы захватить храповое колесико, захватывающего коромысло при перемещении рычага из стороны в сторону.

В тот момент, когда происходит движение колеса в обратном направлении, собачка легко соскакивает на несколько зубцов колеса. В коленчатом вале этот простой, но достаточно важный механизм выполняет роль средства моментальной остановки.

Другое назначение механизма – предотвращение проворачивания вала. Так используемый в конструкции лебёдки храповик останавливают обратное провертывание барабана при подъёме груза.

При необходимости осуществления попеременного вращения вала вправо-влево, зубцы делают прямоугольной формы, а собачку перекидной. Перекидывание собачки, позволяет изменять направление вращения храповика.

Требующийся поворот храповика определяет количество зубцов. На какую долю окружности предполагается поворот храповика, столько зубцов и проектируют. Для поворота на 60 градусов потребуется 6 зубцов (одна шестая окружности), поворота на 30 градусов – 12 зубцов (одна двенадцатая полного оборота). Минимальное количество зубцов – 6.

При проектировании учитывается такая особенность, чем больше храповик, тем больше должен быть рычаг. Поэтому храповик делают максимально допустимо маленьким. Высота зубца рассчитывается в 0,35-0,4 величины шага. Профиль традиционно бывает прямоугольный, пологий или по радиусу. Проектирование механизма с двумя рычагами делает его более устойчивым, предотвращая перекос в процессе работы. Скашивание конца зубца, делает упор более надёжным.

Храповик коленчатого вала позволяет присоединить пусковую рукоятку. С его помощью происходит передача вращательного движения, идущего по направлению от рукоятки к коленчатому валу для осуществления запуска. Также происходит автоматическое отсоединение вала от рукоятки в кратчайшее время после начала работы двигателя.

В качестве исходных данных требуется знать необходимый угол поворота храпового колеса α o и передаваемый крутящий момент на валу храпового колеса.

Предварительное число зубьев храпового колеса z пр =360 o /α o принимают z равным от 8 до 48, предпочтительно z=12 ÷ 20.

Фактический угол поворота храпового колеса (на один зуб)

α o = 360 o / z

Модуль храпового колеса, мм:

для наружного зацепления

для внутреннего зацепления

где,
M кр - крутящий момент на валу храпового колеса, Н·мм;
ψ - отношение ширины колеса к модулю, ψ = b / m .

Расчетный модуль округляют до стандартного. Проверку линейного давления производят по формуле

где,
b - ширина зуба, мм;
[σ и ] - допускаемое напряжение на изгиб для материала колеса, МПа;
q - допускаемое давление на единицу длины зуба, Н/мм. Ширина собачки b 1 Значения ψ, q, [σ и ] для различных материалов храповых колес приведены в таблице.


Храповые колеса и их собачки изготовляют закаленными и цементованными с закалкой.

Напряжение в опасном сечении а - b или с - d собачки (см. рисунок выше)


где окружная сила
P = M кр / mz

Изгибающий момент М и = Pl (здесь l - плечо изгиба); W = b 1 x² / 6; F = b 1 x.

Диаметр оси собачки: соответственно в сечении I и II


где,
[σ и ] ВИДЫ ХРАПОВИКОВ

1. Мелкомодульные храповики

Общие размеры, мм Зацепление
Модуль, m Шаг, t h h 1 r r 1 наружное внутреннее
φ o φ 1 o φ o φ 1 o
0,6 1,88 0,8 3 0,3 0,4 55 50 65 60
0,8 2,51 1,8
1,0 3,14 1,2
1,25 3,92 1,5 4,0 0,5 0,8 60 55 70 65
1,5 4,71 1,8
2,0 6,28 2,0 5,0
2,5 4,85 2,5

Для внутреннего зацепления брать значения D, не отмеченные звездочкой

Модуль,
m
Диаметр D зацепления при числе зубьев
20 24 30 36 45 50 60 72 90 100 120 144 180 200
0,6 - - - - - 30* 36* 43,2* 54* 60 72 86,4 108 120
0,8 - - - - 36* 40* 48* 57,6* 72 80 96 115,2 144 160
1,0 - - - 36* 45* 50* 60 72 90 100 120 144 180 200
1,25 - - 37,5* 45* 56,2* 62,5 75 90 112,5 125 150 180 - -
1,5 - 36* 45* 54* 67,5 75 90 108 135 150 180 - - -
2,0 40* 48* 60 72 90 100 120 144 180 - - - - -
2,5 50* 60* 75 90 112,5 125 150 180 - - - - - -

2. Храповик переключения
(число зубьев z от 12 до 30)


t = πm - шаг, мм;

h = m - высота зуба, мм.

Построение профиля. Разделить внешнюю окружность NN на z равных частей (АA = t), через точки деления провести радиусы и построить угол β = 4°. В точке С пересечения образующей угла β с окружностью SS, ограничивающей впадины зубьев, построить угол A 1 CB = 80° искомого профиля.

3. Остановочные храповики с наружным и внутренним зацеплениями
(число зубьев z от 8 до 30)


t = πm - шаг, мм;
2R = mz - диаметр начальной окружности, мм;
h = 0,75m - высота зуба, мм;
a = m - длина хорды АВ, мм.

Параметры Модуль, m
6 8 10 12 14 16 18 20 22 24 26 30
Храповик t 18,85 25,13 31,42 37,70 43,98 50,27 56,55 62,83 69,12 75,40 81,68 94,45
h 4,5 6 7,5 9 10,5 12 13,5 15 16,5 18 19,5 22,5
Собачка h 1 6 8 10 12 14 14 16 18 20 20 22 25
a 1 4 4 6 6 8 8 12 12 12 14 14 16

Построение профилей наружного и внутреннего зацеплений (в скобках дана величина углов при внутреннем зацеплении). Описывают начальную окружность NN и окружность оснований зубьев SS. Окружность NN делят шагом t на равные части. От любой точки деления откладывают хорду АВ = а. На хорде ВС при точке С строят угол в 30° (20°). В середине хорды ВС восстанавливают перпендикуляр LM до пересечения в точке 0 со стороной угла СК. Из точки 0 радиусом 0С описывают окружность.Точка F пересечения этой окружности с окружностью SS есть вершина угла в 60° (70°).

Наверно многие садоводы задавались вопросом, в чем преимущества секаторов с храповым механизмом. Ответить можно однозначно, именно в механизме и кроется секрет успеха. Его использование дает возможность разделить требуемое усилие для обрезки крупной ветви на несколько приемов. Требуемое 20-и килограммовое усилие разбивается на несколько приемов, в зависимости от прилагаемой садоводом силы.

Этапы работы инструмента с храповым устройством механизма.

Работу любого секатора, имеющего храповой механизм можно разбить на несколько этапов. Эти этапы включаются в момент, когда лезвие прекращает свой путь в древесине. Как только оно останавливается, пружина возвращает ручку инструмента в исходное положение. Лезвие при этом остается неподвижным. От садовода требуется вновь осуществить нажатие на ручку инструмента. И так процесс будет продолжаться до той поры, пока ветка не будет удалена. Каждый раз при затруднении будет срабатывать механизм.

Основные преимущества секаторов с храповым механизмом.

  • Обрезка толстых ветвей.
  • Обрезка сухих ветвей и сучков.
  • Чистый и ровный срез.
  • Приложение минимальных усилий.

При этом инструмент позволяет производить любой вид обрезки с минимальными усилиями. А это очень удобно, если за садом следит женщина-садовод.

Имеется и один недостаток у храпового механизма садовых секаторов. Это количество приемов за которые обрезаются побеги. Представьте, что Вам требуется осенью или весной осуществить обрезку целого сада. Сколько лишних движений придется сделать таким инструментом для удаления одной ветви. А их в большом саду может огромное количество. Вместе с этим оно того стоит. Ведь обрезать толстые ветви обводным инструментом довольно затруднительно. Садовая пила тоже потребует лишних движений. Да и качество среза будет в обоих случаях ниже, чем если бы процедура производилась секатором с храповым механизмом.

Выбирая секатор с храповым механизмом, обращайте внимание на заточку лезвий. Она должна быть идеальной. При этом смотрите, чтоб сами лезвия садового

Публикации по теме