Что такое реле и для чего оно нужно. Установка промежуточного реле (схема) Реле замыкания цепи

Промежуточное реле необходимо для выполнения вспомогательных функций. Оно широко применяется в системах управления и автоматики. Основное назначение элемента – это распределение и переключение нагрузок в электросетях. Реле необходимо для преобразования или передачи одного сигнала в другой. Используется как для постоянного, так и для переменного тока. Как правило, изделие применяют для управления более мощными устройствами: силовыми контакторами, исполнительными устройствами системы автоматики и сигнализации. В этой статье мы расскажем читателям сайта о том, как выполняют подключение промежуточного реле, предоставив схему монтажа и видео инструкцию.

Способы включения устройства

Как подключить механизм в систему? Подключение приспособления в электрическую цепь происходит по двум вариантам:

Когда есть нормальное стабильное напряжение источника питания, то должно надежно срабатывать. Помимо этого, предусмотрена надежная их работа при аварийном понижении напряжения до 40–60%. По особенности в конструкции такой элемент преобразования может быть с одной обмоткой, двумя или тремя (последние встречаются крайне редко).

Подключение промежуточного реле является важным для любого оборудования или прибора. Ведь это позволяет не только автоматически прерывать цепь, но и с его помощью можно расширять функциональные способности других реле, которые расположены в этой электрической цепи.

Долговечность устройства зависит от количества его срабатывания. То есть она характеризуется численностью циклов срабатывания и возвратом в свое первоначальное положение. Степень защищенности аппаратуры от различных нежелательных факторов, что окружают конструкцию, оценивается по такому критерию, как время перехода контактов из одного положения в другое.

Схемы подключения

После того как промежуточное реле было установлено в электрический шкаф, следует осуществить его подключение в электрическую схему. Для этого применяются контакты самой катушки и непосредственные контактные элементы. Реле имеет, как правило, несколько пар контактов NO нормально открытые и NC нормально закрытые. Нормальным положением считается отсутствие подачи сигнала на катушку. Так как катушка не обладает полярностью, то подключение контактов осуществляется произвольно.

Устанавливается такой аппарат в схемах управления и автоматики. Располагается между исполнительным устройством (например, контактор) и источником задания. На рисунке изображена электрическая схема приспособления:

На картинке изображено промежуточное реле без подачи напряжения. Если его подать, то контакты переключатся. Напряжение в катушке может быть различное: 220, 24 и 12 вольт.

Как подключить приспособление указано на рисунке ниже:

В некоторых случаях реле промежуточного типа используется как контактор, тогда схема установки будет выглядеть следующим образом:

Как видно, промежуточное реле обладает тремя группами контактов, которые управляют нагрузкой и одной группой для удержания тока в катушке. Можно установить дополнительно контактор, тогда устройство подключается сначала к контактору.

Также данный аппарат можно подключать к датчику движения. Благодаря ему, к системе датчика движения есть возможность подключать несколько мощных ламп. Монтаж происходит следующим образом: обмотка приспособления подключается к датчику, а силовой контакт переключает нагрузку в системе светильников. Как установить такой датчик, показано ниже:

Еще один вариант установки электронного пускателя — к терморегулятору. Схема изображена на картинке (нажмите, чтобы увеличить):

В этом случае подключение терморегулятора и пускателя производится в последовательном порядке к первой фазе и нулевому проводу (на схеме они обозначаются как Т1 и К1 соответственно). Монтаж остальных контактов пускателя осуществляется равномерно между другими фазами.

Реле – коммутационное устройство (КУ), соединяющее или разъединяющее цепь электронной или при изменении входных величин тока. Прежде чем мы перейдем к детальному рассмотрению того, что такое реле, как устроено, по какому принципу работает и где применяется, пожалуй, нужно узнать, когда это устройство впервые появилось и кто его изобретатель.

Первенство создания реле спорно. Некоторые утверждают, что впервые это устройство было сконструировано в 1830-1832 гг. русским ученым Шиллингом П.Л. и являлось основным элементом вызывающего механизма в разработанном им же варианте телеграфа.

Другие научные историки приписывают первенство изобретения известному физику Дж. Генри, который в 1835 г. разработал контактное реле во время усовершенствования созданного им в 1831 году телеграфного аппарата. Первый соленоид работал по принципу электромагнитной индукции и был некоммутационным устройством.


Реле, в качестве самостоятельного устройства, впервые упоминается в патенте на телеграф, выданном Самуэлю Морозе.

Как видим, первой сферой применения этого коммутационного устройства был телеграф и только позднее с развитием техники он стал применяться в электрическом и электронном .

Устройство и принцип работы реле

Реле представляет собой катушку, состоящую из немагнитного основания, на которое намотан провод из меди с тканевой или синтетической изоляцией, но чаще всего с диэлектрическим лаковым покрытием. Внутри катушки установленной на нетокопроводящее основание, размещается металлический сердечник. Также в устройстве имеются пружины, якорь, соединительные элементы и пары контактов.

При подаче тока на обмотку электромагнита (соленоида) сердечник притягивает якорь, который соединяется с контактом и электрическая или электронная цепь замыкается. При снижении силы тока до определенного значения, якорь, под действием пружины, возвращается на исходную позицию, вследствие чего происходит размыкание цепи.

Более плавная и точная работа достигается благодаря использованию резисторов, а защиту от скачков напряжения и искрения обеспечивает установка конденсаторов.

У большинства электромагнитных реле имеется не одна, а несколько пар контактов, что позволяет управлять несколькими цепями одновременно.

Если в двух словах, то этот вид коммутационного устройства работает по принципу электромагнитной индукции. Благодаря довольно простому принципу действия реле имеют высокую надежность в эксплуатации.

В видеоролике ниже разъясняется принцип действия электромагнитного КУ:

Основные характеристики КУ

К основным характеристикам, на которые следует обратить внимание при выборе данного вида коммутационного устройства, относят:

  • чувствительность – срабатывание от подаваемого на обмотку тока определенной силы, достаточной для включения устройства;
  • сопротивление обмотки электромагнита;
  • напряжение (ток) срабатывания – минимально допустимое значение, достаточное для переключения контактов;
  • напряжение (ток) отпускания – значение параметра, при котором происходит отключение КУ;
  • время притягивания и отпускания якоря;
  • частота срабатывания с рабочей нагрузкой на контактах.

Классификация и для чего нужно реле

Поскольку реле являются высоконадежными коммутационными устройствами, то не удивительно, что они нашли широкое применение в самых различных областях человеческой деятельности. Они используются в промышленности для автоматизации рабочих процессов, а также в быту в самой различной технике, например в привычных всех холодильниках и .

Реле имеют сложную классификацию и делятся на несколько групп:

По сфере применения:

  • управление электрическими и электронными системами;
  • защита систем;
  • автоматизация систем.

По принципу действия:

  • тепловые;
  • электромагнитные;
  • магнитолектические;
  • полупроводниковые;
  • индукционные.

По поступающему параметру, вызывающему срабатывание КУ:

  • от тока;
  • от напряжения;
  • от мощности;
  • от частоты.

По принципу воздействия на управляющую часть устройства:

  • контактные;
  • бесконтактные.

В зависимости от вида и классификации реле применяются в , автомобилях, поездах, вычислительной технике и т.д. Однако, чаще всего этот вид коммутирующего устройства используется для управления токами большой величины.

Основные виды реле и их назначение

Производители настраивают современные коммутационные устройства таким образом, чтобы срабатывание происходило только при определенных условиях, например, при увеличении силы тока, поступающего на входные клеммы КУ. Ниже мы вкратце рассмотрим основные виды соленоидов и их назначение.

Электромагнитные реле

Электромагнитное реле – это электромеханическое коммутационное устройство, принцип действия которого основан на воздействии магнитного поля, созданного током в статичной обмотке, на якорь. Этот вид КУ разделяется собственно на электромагнитные (нейтральные) устройства, которые реагируют лишь на значение тока, подаваемого на обмотку, и поляризованные, работа которых зависит как от токовой величины, так и от полярности.

Используемые в промышленном электромагнитные реле находятся на промежуточной позиции между сильноточными устройствами (магнитными пускателями, контакторами и т.д.) и слаботочным оборудованием. Наиболее часто данный вид реле применяется в цепях управления.

Реле переменного тока

Срабатывание этого вида реле, как видно из названия, происходит при подаче на обмотку переменного тока определенной частоты. Данное коммутирующее устройство для переменного тока с контролем перехода фазы через ноль или без такового, представляет собой блок из тиристоров, выпрямительных диодов и управляющих схем. Реле переменного тока могут быть выполнены в виде модулей на основе трансформаторной или оптической развязки. Данные КУ применяются в сетях переменного тока с максимальным напряжением 1,6 кВ и средним током нагрузки до 320 A.


Иногда работа электросети и приборов не возможна без использования промежуточного . Обычно КУ данного типа применяется, если необходимо разомкнуть или разомкнуть разнонаправленные контакты цепи. К примеру, если используется осветительный прибор с , то один проводник присоединяется к сенсору, а другой подводит электроэнергию к .


Работает это таким образом:

  1. подача тока на первое коммутационное устройство;
  2. от контактов первого КУ ток поступает на следующее реле, которое имеет более высокие характеристики, чем у предыдущего и способно выдерживать токи с высокими значениями.

Функции малогабаритного реле переменного тока с напряжением 220 В весьма разнообразны и широко используются в качестве вспомогательного устройства в самых различных областях. Данный вид КУ применяется в тех случаях, когда основное реле не справляется со своей задачей или же при большом количестве управляемых сетей которые уже не в состоянии обслужить головное устройство.

Промежуточное коммутационное устройство применяется в промышленном и медицинском оборудовании, транспорте, холодильном оборудовании, телевизорах и прочей .

Реле постоянного тока

Реле постоянного тока делятся на нейтральные и поляризованные. Отличие между ними состоит в том, что поляризованные КУ постоянного тока чувствительны к полярности подаваемого напряжения. Якорь коммутационного устройства меняет направление движения в зависимости от полюсов питания. Нейтральные электромагнитные реле постоянного тока не зависят от полярности напряжения.

Электромагнитные КУ постоянного тока в основном используют, когда нет возможности подключения к электрической сети переменного тока.


К недостаткам соленоидов постоянного тока относят необходимость использования и более высокую стоимость в сравнении с КУ переменного тока.

Данное видео демонстрирует схему подключения и объясняет принцип работы 4 контактного реле:

Электронное реле


Разобравшись с тем, что такое токовое реле, рассмотрим электронный тип этого устройства. Конструкция и принцип действия электронных реле практически те же, что и в электромеханических КУ. Однако, для выполнения необходимых функций в электронном устройстве используется полупроводниковый диод. В современных транспортных средствах большинство функций реле и переключателей выполняют электронные релейные блоки управления и на данный момент невозможно полностью от них отказаться. Так, например, блок электронных реле позволяет контролировать расход энергии, величину напряжения на аккумуляторных батарей, управлять и т.д.

Обозначение реле на схеме

Чтобы отремонтировать или создать новое , мало знать как работает реле, нужно знать как оно выглядит на схемах. В приведенной ниже таблице показаны самые основные буквенно-графические обозначения КУ принятые в международном классификаторе.

Основные обозначения

Изображение Описание

Схематически обмотка соленоида выглядит как прямоугольник, от наибольших сторон которого отходят выводы питания электромагнита – А и А1. Также на схеме это коммутационное устройство может обозначаться буквой К.

Контакты КУ на схеме изображаются точно так же как и контакты переключателей.


Поляризованное реле на схеме изображается в виде прямоугольника с жирной точкой на одном из выводов контакта. Буквенное обозначение P внутри прямоугольника также говорит о полярности устройства.

Иногда внутри прямоугольника указывают параметры или конструктивные особенности. Так, например, две наклонные линии могут обозначать, что в устройстве имеется 2 обмотки.

Подробнее, с символическим обозначением реле и других элементов электронных и , можно ознакомиться, заглянув в специальные справочники, которых в интернете довольно много.

Ведущие производители реле

Производитель Изображение Описание
Finder (Германия)
Компания Финдер производит реле и и занимает среди европейских производителей третье место. Производитель выпускает реле:
  • общего назначения;
  • твердотельные;
  • силовые;
  • времени;
  • интерфейсные и многие другие.

Продукция компании имеет сертификаты ISO 9001 и ISO 14001.

К ак известно, габариты и мощность выключателя, коммутирующего мощную нагрузку, должны этой нагрузке соответствовать. Нельзя включить такие серьезные потребители тока в автомобиле, как, скажем, вентилятор радиатора или обогрев стекла крошечной кнопочкой – её контакты просто сгорят от одного-двух нажатий. Соответственно, кнопка должна быть крупной, мощной, тугой, с четкой фиксацией положений on/off. К ней должны подходить длинные толстые провода, рассчитанные на полный ток нагрузки.

Но в современном автомобиле с его изящным дизайном интерьера места таким кнопкам нет, да и толстые провода с дорогостоящей медью стараются применять экономно. Поэтому в качестве дистанционного силового коммутатора чаще всего применяется реле – оно устанавливается рядом с нагрузкой или в релейном боксе, а управляем мы им с помощью крошечной маломощной кнопочки с подведенными к ней тоненькими проводками, дизайн которой легко вписать в салон современной машины.

Внутри простейшего типичного реле располагается электромагнит, на который подается слабый управляющий сигнал, а уже подвижное коромысло, которое притягивает к себе сработавший электромагнит, в свою очередь замыкает два силовых контакта, которые и включают мощную электрическую цепь.

В автомобилях чаще всего используются два типа реле: с парой замыкающих контактов и с тройкой переключающих. В последнем при срабатывании реле один контакт замыкается на общий, а второй в это время отключается от него. Существуют, конечно же, и более сложные реле, с несколькими группами контактов в одном корпусе – замыкающими, размыкающими, переключающими. Но встречаются они существенно реже.

Обратите внимание, что на нижеприведенной картинке у реле с переключающей контактной тройкой рабочие контакты пронумерованы. Пара контактов 1 и 2 называется «нормально замкнутые». Пара 2 и 3 – «нормально разомкнутые». Состоянием «нормально» считается состояние, когда на обмотку реле НЕ подано напряжение.

Наиболее распространенные универсальные автомобильные реле и их контактные выводы со стандартным расположением ножек для установки в блок предохранителей или в выносную колодку выглядят так:




Герметичное реле из комплекта нештатного ксенона выглядит иначе. Залитый компаундом корпус позволяет ему надежно работать при установке вблизи фар, где водяной и грязевой туман проникают под капот через решетку радиатора. Цоколевка выводов – нестандартная, поэтому реле комплектуется собственным разъемом.


Для коммутации больших токов, в десятки и сотни ампер, используют реле иной конструкции, нежели описанные выше. Технически суть неизменна – обмотка примагничивает к себе подвижный сердечник, который замыкает контакты, но контакты имеют значительную площадь, крепление проводов – под болт от М6 и толще, обмотка – повышенной мощности. Конструктивно эти реле сходны со втягивающим реле стартера. Применяются они на грузовых машинах в качестве выключателей массы и пусковых реле того же стартера, на разной спецтехнике для включения особо мощных потребителей. Нештатно их используют для аварийной коммутации джиперских лебедок, создания систем пневмоподвески, в качестве главного реле системы самодельных электромобилей и т.п.




К слову, само слово «реле» переводится с французского как «перепряжка лошадей», и появился сей термин в эпоху развития первых телеграфных линий связи. Малая мощность гальванических батарей того времени не позволяла передавать точки и тире на дальние расстояния – все электричество «гасло» на длинных проводах, и доходившие до корреспондента остатки тока были неспособны шевельнуть головку печатающего аппарата. В результате линии связи стали делать «с пересадочными станциями» – на промежуточном пункте ослабевшим током активировали не печатающий аппарат, а слабенькое реле, которое уже, в свою очередь, открывало путь току из свежей батареи – и далее, и далее…

Что нужно знать о работе реле?

Напряжение срабатывания

Напряжение, которое обозначено на корпусе реле, – это усредненное оптимальное напряжение. На автомобильных реле пропечатано «12V», но срабатывают они и при напряжении 10 вольт, сработают и при 7-8 вольтах. Аналогично и 14,5-14,8 вольт, до которых поднимается напряжение в бортсети при запущенном двигателе, им не вредит. Так что 12 вольт – это условный номинал. Хотя реле от 24-вольтовой грузовой машины в 12-вольтовой сети не заработает – тут уж разница слишком велика…


Коммутируемый ток

Второй главный параметр реле после рабочего напряжения обмотки – максимальный ток, который может пропустить через себя контактная группа без перегрева и пригорания. Указывается он обычно на корпусе – в амперах. В принципе, контакты всех автомобильных реле достаточно мощные, «слабаков» тут не водится. Даже самое миниатюрное коммутирует 15-20 ампер, реле стандартных размеров – 20-40 ампер. Если ток указывается двойной (например, 30/40 А), то это означает кратковременный и долговременный режимы. Собственно, запас по току никогда не мешает – но это касается в основном какого-то нештатного электрооборудования автомобиля, подключаемого самостоятельно.


Нумерация выводов

Выводы автомобильных реле маркируются в соответствии с международным электротехническим стандартом для автопрома. Два вывода обмотки пронумерованы цифрами «85» и «86». Выводы контактной «двойки» или «тройки» (замыкающие или переключающие) обозначаются как «30», «87» и «87а».

Впрочем, гарантии маркировка, увы, не дает. Российские производители порой маркируют нормально замкнутый контакт как «88», а иностранные – как «87а». Неожиданные вариации стандартной нумерации встречаются и у безымянных «брендов», и у компаний уровня Bosch. А иногда контакты и вовсе маркируются цифрами от 1 до 5. Так что если тип контактов не подписан на корпусе, что нередко случается, лучше всего проверить распиновку неизвестного реле при помощи тестера и источника питания 12 вольт – подробнее об этом ниже.


Материал и тип выводов

Контактные выводы реле, к которым подключается электропроводка, могут быть «ножевого» типа (для установки реле в разъем колодки), а также под винтовую клемму (обычно у особо мощных реле или реле устаревших типов). Контакты бывают «белыми» или «желтыми». Желтые и красные – латунь и медь, матовые белые – луженая медь или латунь, блестящие белые – сталь, покрытая никелем. Луженые латунь и медь не окисляются, но голая латунь и медь – лучше, хотя и склонны темнеть, ухудшая контакт. Никелированная сталь также не окисляется, но сопротивление её высоковато. Неплохо, когда силовые выводы – медные, а выводы обмотки – никелированные стальные.


Плюс и минус питания

Чтобы реле сработало, на его обмотку подается питающее напряжение. Полярность его – безразлична для реле. Плюс на «85» и минус на «86», или наоборот – без разницы. Один контакт обмотки реле, как правило, постоянно подсоединен к плюсу или минусу, а на второй приходит управляющее напряжение с кнопки или какого-либо электронного модуля.

В прежние годы чаще использовалось постоянное подключение реле к минусу и плюсовой управляющий сигнал, сейчас более распространен обратный вариант. Хотя это не догма – бывает по-всякому, в том числе и в рамках одного автомобиля. Единственный вариант исключения из правил – реле, в котором параллельно обмотке подключен диод – тут уже полярность важна.


Реле с диодом параллельно катушке

Если напряжение на обмотку реле подает не кнопка, а электронный модуль (штатный или нештатный – например, охранное оборудование), то при отключении обмотка дает индуктивный всплеск напряжения, который способен повредить управляющую электронику. Чтобы погасить всплеск, параллельно обмотке реле включается защитный диод.

Как правило, внутри электронных узлов эти диоды уже есть, но иногда (в особенности в случае различного допоборудования) требуется реле со встроенным внутри диодом (в этом случае его символ маркирован на корпусе), а изредка применяется выносная колодка с диодом, припаянным со стороны проводов. И если вы устанавливаете какое-то нештатное электрооборудование, нуждающееся, согласно инструкции, в таком реле, требуется строго соблюдать полярность при подключении обмотки.


Температура корпуса

Обмотка реле потребляет мощность около 2-2,5 ватт, из-за чего его корпус во время работы может достаточно сильно греться – это не криминально. Но нагрев допускается у обмотки, а не у контактов. Перегрев же контактов для реле губителен: они обугливаются, разрушаются и деформируются. Такое случается чаще всего в неудачных экземплярах реле российского и китайского производства, у которых плоскости контактов порой не параллельны друг другу, контактная поверхность из-за перекоса недостаточна, и при работе идет точечный токовый разогрев.

Реле не выходит из строя мгновенно, но рано или поздно перестает включать нагрузку, или наоборот – контакты привариваются друг к другу, и реле перестает размыкаться. К сожалению, выявить и предупредить такую проблему не совсем реально.

Проверка реле

При ремонте неисправное реле обычно временно подменяют исправным, а затем заменяют на аналогичное, и дело с концом. Однако мало ли какие задачи могут возникнуть, к примеру, при установке дополнительного оборудования. А значит, полезно будет знать элементарный алгоритм проверки реле с целью диагностики или уточнения цоколевки – вдруг попалось нестандартное? Для этого нам понадобятся источник питания с напряжением 12 вольт (блок питания или два провода от аккумулятора) и тестер, включенный в режиме измерения сопротивления.

Предположим, что у нас реле с 4 выводами – то есть, с парой нормально разомкнутых контактов, работающих на замыкание (реле с переключающей контактной «тройкой», проверяется аналогичным образом). Сперва касаемся щупами тестера поочередно всех пар контактов. В нашем случае это 6 комбинаций (изображение условное, чисто для понимания).

На одной из комбинаций выводов омметр должен показать сопротивление около 80 ом – это обмотка, запомним или пометим её контакты (у автомобильных 12-вольтовых реле наиболее распространенных типоразмеров это сопротивление бывает в диапазоне от 70 до 120 ом). Подадим на обмотку напряжение 12 вольт от блока питания или АКБ – реле должно отчетливо щелкнуть.


Соответственно, два других вывода должны показывать бесконечное сопротивление – это наши нормально разомкнутые рабочие контакты. Подключаем к ним тестер в режиме прозвонки, а на обмотку одновременно подаем 12 вольт. Реле щелкнуло, тестер запищал – все в порядке, реле работает.


Если же вдруг на рабочих выводах прибор показывает замыкание даже без подачи напряжения на обмотку, значит, нам попалось редкое реле с НОРМАЛЬНО ЗАМКНУТЫМИ контактами (размыкающимися при подаче напряжения на обмотку), либо, что более вероятно, контакты от перегрузки оплавились и сварились, замкнувшись накоротко. В последнем случае реле отправляется в утиль.

Реле имеет важное значение для систем автоматизации и управления нагрузками. Кроме того, реле являются лучшим способом для гальванической развязки между высоковольтными и низковольтными участками цепи. Существует огромное множество различных типов реле. Давайте для начала выясним, как работает реле.

Как работает реле?

Шаг первый — контакты

Каждое реле имеет внутри как минимум два контакта. Контакты реле работают, так же как и контакты простого переключателя или кнопки. Вы можете рассмотреть работу контактов на следующем рисунке:

Обе клеммы работают как переключатель. Когда контакты замкнуты, то ток течет от вывода 1 к выводу 2.

Существует два типа контактов:

  • нормально разомкнутые (N.O.)
  • нормально замкнутые (N.C.)

При нормально разомкнутых контактах (N.O.) в обесточенном (нормальном) состоянии ток не может пройти через эти контакты. И, наоборот, у обесточенного реле при нормально замкнутых контактах (N.C.) ток свободно протекает через контакты.

Ниже на анимации показано как реле с нормально разомкнутыми контактами включает лампочку:

Что касается реле с нормально замкнутыми контактами, то оно работает с точностью до наоборот. Смотрите следующую анимацию:

Шаг второй — комбинация контактов

Реле может иметь комбинацию вышеупомянутых контактов. Посмотрите на рисунке ниже

В этом случае имеется 3-й контакт, называемый «Общий». В связи с этим, выводы NC и NO работают только с этим общим контактом. Между выводами NC и NO не существует контакта! Следующая анимация показывает, как работает эта пара:

Шаг третий – что определяет нормальное состояние?

Хорошо, в реле мы имеем нормально разомкнутые и нормально замкнутые контакты. Но какое состояние считается нормальным? Сделаем еще один шаг в направлении объяснения принципа работы реле – взглянем на рисунок ниже. К предыдущему рисунку добавился новый элемент — пружина.

Эта пружина определяет нормальное положение общего контакта. Если вы обратили внимание на предыдущей анимации, сила переключения (F) через раз оказывает свое воздействие на общий контакт, поскольку существует другая (противоположная) сила, которая постоянно тянет контакт в обратном направлении. Эта сила исходит от пружины:

Таким образом, пружина определяет нормальное состояние контактов. Другими словами, нормальное состояние – это такое положение контактов, при котором нет никакого воздействия на общий вывод, кроме действия пружины.

Шаг четвертый – что заставляет перемещаться общий контакт?

Элемент, который заставляет перемещаться общий контакт, на самом деле является электромагнитом! Катушка электромагнита расположена прямо под контактом.

Когда ток протекает через эту катушку, создается магнитное поле. Сила магнитного поля преодолевает силу пружины и притягивает общий контакт к себе, меняя его положение. Ниже приведена полная анимация работы электромагнитного реле:

Электрическое реле устройство, в котором при достижении определенно значения входной величины, выходная величина изменяется скачком - выходные контакты либо замыкаются - в управляемой цепи появляется (напряжение), либо размыкаются. Реле применяют в цепях управления с током менее 1 А. Входной величиной реле могут быть механические, тепловые, электрические и другие внешние воздействия.

Широкое распространение получили электрические реле (электромагнитные, магнитоэлектрические, электродинамические, индукционные), которые реагируют на изменения тока (напряжения) в обмотке управления (намагничивающей обмотке).

На рис 2.15, а показано устройство простейшего электромагнитного реле клапанного типа: при определенной МДС в цепи управления возникающая электромагнитная сила F притяжения якоря 3 к ярму 1 превышает силу противодействующей пружины 2. Реле срабатывает, воздушный зазор уменьшается, клапан 4 нажимает на подвижный контакт 5 и прижимает его с силой F, зависящей от значения воздушного зазора в конце хода якоря, к неподвижному контакту 6.


Управляемая цепь (цепь управления) замыкается, исполнительный элемент 7 производит требуемое действие. реле в исходном положении могут быть как разомкнуты, так и замкнуты, в последнем случае при срабатывании реле они размыкаются - действие какихлибо устройств прекращается. Первоначально открытые (замыкающие) контакты изображают на схемах, как показано на рис. 2.16, а, первоначально закрытые (размыкающие) контакты имеют условное обозначение, показанное на рис. 2.16, б.



Многие электромагнитные реле имеют несколько контактных пар, тогда их используют для управления несколькими электрическими цепями.
Электрические реле выполняют множество функций, связанных с контролем режимов работы важных элементов электрической цепи генераторов, трансформаторов, линий передач, различных приемников.

Интересное видео о работе реле смотрите ниже:

При нарушении нормального режима того или иного элемента соответствующее реле приводит в действие аппаратуру, которая либо восстанавливает нормальный режим работы, либо отключает поврежденный участок. Такие реле - реле защиты - могут «наблюдать» за током в цепи (токовая защита), напряжением на отдельных участках (защита по напряжению), изменениям мощности (), изменением частоты тока и т. д.

В зависимости от значения или направления входной величины, приводящей к срабатыванию реле, : максимальные, минимальные, направленного действия, дифференциальные и др.

В зависимости от времени срабатывания - отрезка времени от момента появления управляющего воздействия до момента замыкания контактов реле - различают реле быстродействующие (tср < 0,05 с ), нормальные (tср = 0,05-0,25 с ) и с выдержкой времени ().

Если реле «реагирует» только на значение входной величины (тока) и «не реагирует» на направление этой величины, то его называют нейтральным. Реле, «чувствующие» полярность (направление) входной величины (напряжения, тока), называются поляризованными.

Реле по способу воздействия

По способу воздействия исполнительного элемента реле на управляемую величину различают:

  • реле прямого действия , в которых исполнительный элемент (у электромеханических реле исполнительным элементом является подвижная контактная система) непосредственно воздействует на цепь управления,
  • реле косвенного действия , в которых исполнительный элемент воздействует на контролируемую цепь через другие аппараты.

Реле по способу включения воспринимающего элемента

По способу включения воспринимающего элемента различают первичные, вторичные и промежуточные реле.

Воспринимающим элементом электромагнитных реле является электромагнит, преобразующий управляющий (напряжение) в перемещение якоря относительно ярма.

Воспринимающими элементами других электрических реле могут быть магнитоэлектрический механизм, индукционная система, электродинамический механизм и т. д.

Воспринимающий элемент первичных реле включается непосредственно в контролируемые цепи. У вторичных реле воспринимающий элемент включается в контролируемые цепи через измерительные трансформаторы. Промежуточные реле работают в цепях исполнительных элементов других реле и предназначаются для усиления и преобразования сигналов первичных или вторичных реле.

Реле защиты

Рассмотрим устройство и принцип действия электромагнитных - реле максимального тока. Электромагнитные реле, получившие очень широкое распространение, по конструктивному исполнению воспринимающего элемента бывают клапанного типа и с поворотным якорем.

Реле клапанного типа (см. рис. 2.15, б) широко применяют в качестве реле максимального тока. Обозначения на рис. 2.15, б: 1 - катушка возбуждения; 2 - ярмо; 3 - клапан (якорь); 4 - контактная группа.

Катушка возбуждения реле тока РТ включается последовательно в контролируемую цепь (рис. 2.17)

При токах / в этой цепи, превышающих допустимые значения, сила притяжения якоря к ярму преодолевает сопротивление пружины и приводит к размыканию или замыканию контактов Р~ в цепи управления другого аппарата (рис. 2.17, а, б) - аппарата КМ.


Размыкание контактов РТ в цепи аппарата (реле) КМ (рис. 2.17, а) приводит к размыканию контактов КМ в контролируемой цепи питания приемника, т. е. цепь тока / разрывания (одновременно размыкаются контакты КМЬ шунтировавшие кнопку «Пуск»). Исчезновение тока/в цепи возбуждения реле тока Рт приводит вновь к замыканию его контактов Рт (контакты этого реле при отсутствии тока в его обмотке всегда замкнуты), но теперь цепь возбуждения реле КМ разомкнута, так как кнопка «Пуск» не включена и разомкнуты контакты KMj. Для включения цепи питания приемника следует вновь нажать кнопку «Пуск», реле КМ сработает и замкнет свои контакты КМ}.

Кнопку «Пуск» после этого можно отпустить, так как цепь возбуждения реле КМ продолжает быть замкнутой через шунтирующие кнопку «Пуск» контакты КМР. Срабатывание реле Рт на схеме рис. 2.17, 6 приводит к замыканию первоначально разомкнутых контактов Рт в цепи реле КМ.

Реле КМ срабатывает и размыкает свои первоначально замкнутые контакты КМ, шунтировавшие резистор R в цепи питания приемника.

При этом последовательно с приемником включается резистор с сопротивлением R и тем самым значение тока в цепи ограничивается. Когда снизится до нормального значения, реле РТ «отпустит» свои контакты Рт, реле КМ отключится и резистор R будет вновь зашунтирован контактами КМ.

Тепловое реле (рис. 2.20, а) состоит из биметаллической пластины 2, которая находится в тепловом поле нагревателя 7, включенного последовательно с контролируемым объектом (приемником), и контактов 4. Если контролируемый /больше допустимого, то через некоторое время биметаллическая пластина 2 под действием избыточной теплоты нагревателя 1 изогнется, так как ее нижний слой расширяется (удлиняется) больше, чем верхний. Пластина 2 освобождает защелку 3, которая под действием пружины поворачивается, и контакты 4размыкаются. Схема включения теплового реле представлена, например, на рис. 2.20, 6, где видно, что при срабатывании теплового реле его контакты разрывают цепь питания реле К и отключают приемник от источника. После охлаждения биметаллической пластины, реле механическим путем возвращается в исходное положение.


Реле управления и автоматики (). Электромеханические реле управления представляют собой слаботочные аппараты, предназначенные для выполнения логических и измерительных функций в системах управления. Для характеристики работы реле вводят ряд коэффициентов. Если рассматривать реле в качестве нелинейного элемента, связь входной /вх и выходной /вых величин которых изображена на рис. 2.21, то можно ввести коэффициент возврата Кв как отношение входной величины /п, при которой реле срабатывает, к значению этой же величины /отп, при которой реле отпускает.

Этот коэффициент зависит от соотношения тяговой характеристики Fx (/в) реле (рис. 2.22) и характеристики Fnp(lB) противодействующей пружины.


В начале процесса срабатывания реле при Iвх = Iп зазор максимален (l в нач) и сила притяжения F1 якоря к ярму чуть больше силы сжатия Fnp противодействующей пружины. В конце процесса срабатывания реле зазор минимален (/в кон) и сила Fx притяжения якоря к ярму при том же токе /п уже больше силы F , что необходимо для надежного замыкания реле. Отключение реле произойдет при токе /вх, равном току /отп, т. е. когда сила F= F2 станет меньше силы Fnp. Чем меньше величина ДР= Fl - F2 (рис. 2.22), тем, очевидно, выше коэффициент возврата, меньше разница в значениях тока срабатывания /п и тока отпускания /отп. Обеспечить высокий коэффициент возврата можно только у реле с малым ходом якоря, при уменьшении трения в механизме, использования ферромагнитных материалов с узкой петлей гистерезиса. Для повышения надежности срабатывания реле нужно обеспечить выполнение условия /вх > /п. Необходимое превышение тока /вх над значением 1п называют коэффициентом запаса.

Чувствительность реле

Важным параметром реле является чувствительность, т. е. мощность Ру в цепи управления, при которой срабатывает реле.

У высокочувствительных реле Ру < 10 мВт , реле нормальной чувствительности срабатывают при Ру = 1-5 Вт , реле низкой чувствительности при Ру = 10-20 Вт .
Мощность в цепи, которую коммутируют контакты реле Рк, значительно превышает мощность цепи управления. Отношение этих мощностей называют коэффициентом усиления (управления) реле:

Значение Ку у высокочувствительных реле достигает нескольких тысяч.
По значению мощности Рк реле подразделяют на сильноточные (Рк > 500 Вт ), нормальной мощности или промежуточные (Рк < 150 Вт в цепях постоянного тока и Рк < 500 ВА в цепях переменного тока) и слаботочные реле систем автоматики, управления, связи (Рк < 50 Вт в цепях постоянного тока и Рк< 120 ВА в цепи переменного тока).

Конструкции промежуточных реле довольно многообразны. Применяются реле клапанного типа (рис. 2.23), предназначенные для работы в цепях постоянного и переменного токов. На рис. 2.23 видна контактная система 7, содержащая несколько пар контактов, коммутирующих цепи ab, cd, ef. Магнитная цепь реле имеет центральный сердечник (ярмо) 4, обмотку возбуждения 5, включаемую в цепь управляющего сигнала /у, и якорь J, который при своем движении к ярму 4 посредством траверсы 2 замыкает контактные группы ab, cd9 ef. Если это реле предназначено для работы в цепях переменного тока, то магнитопровод выполняют шихтованным.

В конструкции слаботочных реле стремятся уменьшить габаритные размеры, но одновременно повысить разрываемую мощность (Рк) и быстродействие.

Современные слаботочные реле способны производить 200-300 млн срабатываний за срок службы. Одна из конструкций слаботочных реле показана на рис. 2.24.


Все рассмотренные реле относятся к типу нейтральных, т. е. не реагирующих на полярность электрического сигнала в цепи управления они срабатывают при любом направлении тока в обмотке возбуждения. В случаях, когда требуется, чтобы реле срабатывало при определенном направлении тока, применяют поляризованные реле.

В поляризованном реле в магнитную цепь включается постоянный магнит 2 (рис. 2.25). Этот магнит создает основной магнитный поток Ф0, и если якорь J реле занимает среднее положение в зазоре магнитной системы, то на него действуют две равные по значению и противоположные по направлению силы притяжения к полюсам постоянного магнита. Положение якоря неустойчиво, и для удержания его в среднем положении якорь укрепляют на плоской пружине, упругость которой создает устойчивость. Если в катушке электромагнита 1 появляется /у, то возбуждается дополнительный магнитный поток Фу того или иного направления в зависимости от направления магнитодвижущей силы.

Таким образом, изменяются результирующие магнитные потоки в зазорах между якорем и полюсами N-S постоянного магнита (рис. 2.25): в одном из этих зазоров магнитный поток увеличивается, в другом - уменьшается. Сила притяжения якоря пропорциональна квадрату магнитного потока, и, следовательно, якорь, преодолевая сопротивление пружины, притягивается к тому или другому полюсу постоянного магнита - реле срабатывает - контакты 4 замыкают одну либо другую цепь в зависимости от направления тока управления.


Поляризованные реле являются достаточно быстродействующими (время срабатывания достигает тысячных долей секунды), чувствительными (Ру = 0,01-5 мВт), позволяют коммутировать токи 0,21 А при напряжении до 24 В. Высокое быстродействие дает возможность использовать их для коммутации с частотой включений 100-200 Гц.

Тенденция к уменьшению габаритных размеров электромагнитных устройств обусловила появление миниатюрных герметических электромагнитных реле, соизмеримых по размерам с полупроводниковыми элементами. Широкое распространение получают герконовые реле , обладающие высоким быстродействием, надежностью и очень большим сроком службы.

Особый класс аппаратов с герконами составляют реле с электромагнитной памятью (рис. 2.26). Геркон / помещен в магнитное поле магнитотвердого феррита 4 с наконечниками 2. Импульс тока в катушке 3 приводит к срабатыванию реле контакты 5 замыкаются, оставаясь замкнутыми и после окончания импульса тока управления за счет намагничивания ферритового сердечника. Для отпускания реле необходимо подать импульс тока обратного направления.

Значение этого обратного тока должно быть таким, чтобы ферритовый сердечник размагнитился, но не перемагнитился, иначе снова замкнутся.


Публикации по теме