Из чего делают автомобильную резину? Как производят шины для машины Как делается резина.

Резина – эластичный полимерный материал, продукт переработки природного или синтетического изопренового или диенового каучука.

Преобразование каучука в резину происходит путем его вулканизации. При этом линейные молекулы полимера вступают в химическую реакцию с серой, между соседними молекулами образуются сульфидные мостики. Полимер приобретает пространственную структуру. За счет изменения структуры значительно повышаются эластичность, прочность, износоустойчивость и другие технологические характеристики материала.

Достижение наилучшего возможного сочетания механических и физических свойств в процессе изготовления резины известно как оптимум вулканизации.

Технологический процесс производства включает следующие этапы:

  1. образование вулканизационной сети,
  2. этап индукции,
  3. реверсию.

В зависимости от необходимых свойств конечного продукта в реакционную смесь вводят различные добавки: сажу, мел, пластификаторы, смягчители. Для улучшения эксплуатационных качеств готовых резиновых изделий в последнее время все чаще применяются органические добавки, в частности пероксиды и олигоэфиракрилаты.

Различают холодную и горячую вулканизацию. В производстве герметиков используется метод холодной вулканизации при температуре в пределах 20…30 градусов. Горячая вулканизация производится при температурах 140… 300 градусов.

В производстве резины применяются различные катализаторы, которые влияют не только на скорость реакции, но и на качество резины. Чаще всего в промышленности применяются тиазолы и замещенные сульфаниламиды. Сульфаниламиды обеспечивают монолитность изделия, тиазолы повышают устойчивость материала к термоокислительному старению.

Кроме холодной и горячей вулканизации существует способ под названием серная вулканизация, который применяется в производстве резины повышенной износостойкости для изготовления шин и некоторых видов обуви.

Отрасли применения резины

Примерно половина всего объема производства резины предназначается для изготовления шин. Остальное используется в качестве различных видов изоляции, для изготовления деталей различных машин и механизмов, в обувной промышленности, электротехнике, производстве медицинского оборудования, приборостроении и т. д.

Полезные изделия из переработанной резины

Сегодня человечество способно в значительной мере воспроизводить свои потребности в резине. Этот потенциал содержится не просто в отходах, а в отходах, которые некуда девать. Даже богатая природными ресурсами Россия начинает понимать здесь свою выгоду

Резиновая крошка может быть использована для изготовления качественных покрытий, применяемых в самых различных местах, в том числе на даче, детских и спортивных площадках

Опасность отходов

В процессе производства резины в атмосферу попадают оксиды серы, азота, углерода, частицы сажи, резорцин, этилен, формальдегид и ряд других агрессивных и токсичных соединений.

Не меньшую опасность представляют собой и отходы резины, например отслужившие автопокрышки, элементы изоляции и другие резинотехнические изделия. По мере нахождения на открытом воздухе резина постепенно разрушается, выделяя в окружающую среду летучие компоненты и тяжелые металлы .

В местах большого скопления отработанных автопокрышек интенсивно размножаются мышевидные грызуны и некоторые насекомые, которые поселяются в полостях шин. Эти животные являются разносчиками опасных заболеваний а также наносят прямой вред сельскохозяйственному производству и ряду сопредельных с ним отраслей промышленности. Наибольшее количество резиновых отходов есть не что иное, как изношенные шины, это наиболее крупнотоннажный и объемный мусор, поступающий на свалки мира.

Способы утилизации резиновых изделий

В развитых странах все больше внимания уделяется разработке и совершенствованию технологий вторичного использования резиновых изделий, в частности, .

Незначительно изношенные шины подвергаются ремонту путем восстановления протектора. Непригодные для ремонта изделия подлежат утилизации по различным технологиям, которые условно можно разделить на 3 группы:

  1. Методы, не влияющие на физико-химические свойства материала. Это прежде всего грубое дробление отслуживших изделий. Полученная крошка подлежит захоронению либо используется в качестве наполнителя для некоторых видов бетона, асфальта или как сырье для производства резиновой плитки и подобных материалов.
  2. Методы, приводящие к частичному разрушению пространственной структуры материала и частичной деструкции каучука, к которым относится получение шинного регенерата. Регенерат возвращается в цикл шинного производства и заменяет часть первичного сырья.
  3. Термические методы разрушения резины. К этой группе относят пиролиз и сжигание. Более прогрессивным методом термической утилизации является пиролиз, позволяющий получать из отходов резины тепловую и электрическую энергию, ценные компоненты для химической промышленности и минимизировать количество давление на окружающую среду.

Применение продуктов резины в разных отраслях производства позволяет удешевить конечный продукт, уменьшить количество вредных выбросов в атмосферу, почву и воды, а также уменьшить энергоемкость основного производства.

Состав резины и ее получение



К атегория:

Автомобильные эксплуатационные материалы



Состав резины и ее получение

Основным компонентом резины является каучук: его содержание в резиновых изделиях составляет примерно 50…60% по массе. У каучука молекулы представляют собой длинные нити, скрученные в клубки и перепутанные между собой. Такое строение каучука обусловливает его главную особенность - эластичность. При растяжении каучука его молекулы постепенно распрямляются, возвращаясь в прежнее состояние после снятия нагрузки. Однако при слишком большом растяжении молекулы необратимо смещаются друг относительно друга и происходит разрыв каучука.

Вначале в резиновых изделиях использовался только натуральный каучук, который получали из млечного сока (латекса) каучуконосного дерева - бразильской гевеи. В 1932 г. впервые в мире в нашей стране был синтезирован синтетический каучук, который вскоре стал основным сырьем для изготовления резиновых изделий. В настоящее время для этой цели выпускаются десятки разновидностей синтетических каучуков.

Наиболее широкое применение находят стирольные каучуки С KMC (бутадиен-метилстирольный) и СКС (бу-тадиен-стирольный). Эти каучуки превосходят натуральный по. износостойкости, однако уступают ему по эластичности, тепло- и морозостойкости.



При производстве шин используют изопреновый (СКИ -3) и бутадиеновый (СКВ ) каучуки. Каучук СКИ -3 по свойствам близок к натуральному каучуку, каучук СКВ отличается высокой износостойкостью. Хорошую маслобензостойкость имеют хлорпреновый (наирит) и нитрильный (СКН ) каучуки. Из них изготавливают детали, работающие в контакте с нефтепродуктами: шланги, манжеты и др.

При изготовлении камер и герметизирующего слоя бескамерных шин используется бутилкаучук, характеризующийся высокой газонепроницаемостью.

Натуральный или синтетический каучук составляет основу резиновой смеси или «сырой» резины, которая самостоятельно из-за низкой прочности находит ограниченное применение - в основном для изготовления клеев и уплотнительных прокладок. Для увеличения прочности каучуков используется процесс вулканизации - химическое связывание молекул каучука с атомами серы. В процессе вулканизации, протекающем при температуре 130… 140 °С, молекулы серы соединяются с линейными молекулами каучука, образуя как бы мостики между ними (рис. 59). В результате получается вулканизированная резина, представляющая собой упругий материал.

Количество серы, используемое при вулканизации, определяется требованиями прочности и эластичности материала. С ростом концентрации серы прочность резины увеличивается, но одновременно уменьшается ее эластичность. Поэтому в резинах, предназначенных для изготовления автомобильных камер и покрышек, добавка серы ограничена 1…3% от общего содержания каучука. При содержании серы 40…60% каучук превращается в твердый материал - эбонит.

Для обеспечения требуемой прочности и износостойкости резин, особенно предназначенных для изготовления шин, применяются наполнители. Главным из наполнителей является сажа, представляющая собой порошкообразный углерод с размерами частиц 0,03…0,25 мкм. В современных резинах содержится значительное количество са-жи - от 30 до 70% по отношению к содержащемуся каучуку. При введении сажи прочность резины увеличивается более, чем на порядок. Для изготовления цветных резин используется так называемая белая сажа (кремнезем и другие продукты). Наряду с сажей применяются неактивные наполнители, служащие для увеличения объема резиновой смеси без ухудшения ее свойств (отмученный мел, асбестовая мука и др.).

Рис. 1. Строение вулканизированного каучука

Для облегчения смешивания компонентов резиновой смеси в нее вводятся пластификаторы или мягчители - обычно жидкие или твердые нефтепродукты. С целью замедления процессов старения, а также для повышения выносливости резины при многократных деформациях, добавляются противостарители (антиокислители). В качестве противостарителей используются специальные химические вещества, связывающие проникающий в резину кислород. В качестве таких веществ применяют неозон Д и сантофлекс А. Для ускорения вулканизации используют присадки ускорителей. Получение пористых губчатых резин обеспечивается с помощью специальных порообра-зователей.

Для увеличения прочности ряда резинотехнических изделий (автомобильные покрышки, приводные ремни, шланги высокого давления и пр.) резины армируются с помощью тканевой или металлической арматуры. Например, в одном из наиболее ответственных и дорогостоящих изделий - автомобильных покрышках используются полиамидный (капроновый), вискозный или металлический корды.

Основным этапом технологического процесса приготовления резин явлется смешение, при котором обеспечивается полное и равномерное распределение в каучуке всех содержащихся инградиентов (составных частей), число которых может доходить до 15. Смешение выполняется в резиносмесителях, обычно в две стадии. Сначала изготавливается вспомогательная смесь без серы и ускорителей, затем на второй стадии вводятся сера и ускорители. Получаемые резиновые смеси используются для изготовления соответствующих деталей и для обрезинивания корда. В последнем случае для обеспечения достаточной прочности связи между кордом и резиной корд обязательно пропитывается латексами и смолами. Заключительной операцией является вулканизация, после которой резинотехническое изделие пригодно для использования.

При ремонте автомобильных шин и камер методом горячей вулканизации широко применяются такие сорта сырой резины, как прослоечная, протекторная и камерная. R этом случае для обеспечения требуемого качества ремонта наряду с высокой температурой процесс вулканизации должен проходить под определенным давлением, обеспечиваемым с помощью различных устройств.

К атегория: - Автомобильные эксплуатационные материалы

Шина — это единственная часть автомобиля, которая соприкасается с дорогой. Площадь этого соприкосновения (пятно контакта) примерно равна площади одной человеческой ладони.Таким образом, автомобиль на дороге удерживается всего четырьмя ладонями! Поэтому шины, без сомнения, являются очень важным элементом безопасности вождения.

Кроме весьма важной задачи по обеспечению сцепления и управляемости автомобиля, шина также должна обладать комфортом, износостойкостью, снижать расход топлива и дополнять внешний вид автомобиля. Необходимость сочетать такие разные характеристики делает проектирование шин намного более сложным процессом, чем может показаться на первый взгляд. А при изготовлении шин задействовано ничуть не меньше исследований и технологий, чем при создании мобильного телефона.

Условно этапы, которые проходит шина, прежде чем попасть на полки магазина, можно разделить на 3 этапа:

    Анализ рынка

    Моделирование и тестирование модели

    Массовое производство

Анализ рынка

При исследовании рынка компания Мишлен уделяет огромное внимание запросам водителей, при этом не только текущим, но и возможным требованиям к шинам в будущем. Также ведется наблюдение за развитием автомобильного рынка.

Особое внимание уделяется особенностям использования шин в конкретных условиях, куда включают не только особенности вождения, но и климатические условия, дорожную специфику и качество покрытия.

Все это позволяет в полной мере удовлетворить потребности самых требовательных клиентов.

Моделирование и тестирование модели

На основе полученных данных начинается кропотливая работа по созданию будущей шины. В этом процессе принимают участие не только химики и конструкторы, но и многие другие специалисты, например, промышленные дизайнеры.

Именно от совместной работы различных специалистов зависит успех будущей шины. Качественная и надежная шина - это не столько технологический секрет, сколько настоящее искусство, заключающееся в правильном выборе, дозировке и взаимосвязи различных компонентов шины.

Создание резиновой смеси


Ее разработка, подготовка и изготовление сродни созданию кулинарного шедевра. Это наиболее секретная часть шины, и, хотя широко и хорошо известны около 20 основных составляющих, узнать подробнее о резиновой смеси не представляется возможным. Ведь секрет состоит не только в компонентах смеси, но в их грамотной комбинации и балансе, которые и будут наделять шину ее специфичными функциями.

Основные элементы резиновой смеси шины:

Каучук. Бывает двух видов - натуральный и синтетический, добавляется в резиновую смесь в различных пропорциях в зависимости от назначения шины, является ее основой. Натуральный каучук - это высушенный сок дерева гевеи, также содержится в других видах растений, например, в одуванчиках, но из-за сложности производственного процесса из последних не производится.

Синтетический каучук - продукт, производимый из нефти. В настоящее время используется несколько десятков различных синтетических каучуков, каждый их которых имеет свои характерные особенности, влияющие на конкретные характеристики шины. Последние поколения синтетических каучуков очень близки по свойствам к натуральному, однако шинная промышленность по-прежнему не может отказаться от последнего.

Технический углерод. Значительная часть резиновой смеси состоит из промышленной сажи (технический углерод), наполнителя, предлагаемого в различных вариантах и придающего шине её специфичный черный цвет. Впервые сажа была применена в шинах в начале 20 века, до этого времени шины имели цвет бледно-желтый (цвет натурального каучука). Основное назначение сажи - создание надежных молекулярных соединений для придания резиновой смеси особой прочности и износостойкости.

Диоксид кремния (силика). Этот компонент в свое время был привлечен в резиновую смесь как замена техническому углероду. В процессе тестирования нового состава было выявлено, что диоксид кремния не может вытеснить из резиновой смеси сажу, так как не обеспечивает такую же высокую прочность резины. Однако новый компонент улучшал сцепление шины с мокрой поверхностью дороги и снижал сопротивление качению. В итоге эти два элемента сейчас используются в шине совместно, при этом каждый из них наделяет шину своими лучшими качествами.

Сера. Является одним из компонентов, участвующих в вулканизации. Благодаря этому процессу пластичная сырая резиновая смесь превращается в эластичную и прочную резину.

При создании шины работа ведется не только над характеристиками шины, но и над эстетической стороной, рассматривается большое количество разных дизайнов рисунка протектора. Применение методов моделирования позволяет выбрать рисунок, наилучшим образом дополняющий существующую резиновую смесь и внутреннюю структуру будущей шины. По результатам компьютерного моделирования лучшие образцы запускаются в производство и подвергаются реальным испытаниям.

Ежегодно специалистами компании Мишлен проводятся многочисленные тесты, в ходе которых проезжают свыше 1,6 млрд км. Это примерно 40 000 путешествий вокруг земного шара. В процессе тестирования дорабатываются последние черты будущей шины. В момент, когда все тесты проведены, а результаты соответствуют начальному заданию, шина запускается в массовое производство.

Производство



Начальный этап запуска любой шины в массовое производство - подготовка производственных площадок.

Компания Мишлен владеет . И основная задача этого этапа - настроить каждый производственный процесс таким образом, чтобы шина отвечала не только изначальному техническому заданию, но и по всем параметрам не отличалась от аналогичной шины, произведенной в любой другой стране.

В последующем процессе массового производства каждая шина MICHELIN производится высококвалифицированными специалистами с применением различных видов ручного и автоматического оборудования. Когда это необходимо, компания Мишлен проектирует собственное оборудование, отвечающее потребностям производства.

Основные этапы производства шин:


    Подготовка резиновых смесей. Как уже было указано выше, рецептура каждой резиновой смеси является основой для наделения шины необходимыми функциями.

    Создание компонентов шины. На этом этапе из полученной резины формируется протекторная лента, а также создается «скелет» шины - каркас и брекер. Первый изготавливается из слоев обрезиненных текстильных нитей, а второй - из обрезиненного высокопрочного металлокорда. Также готовится борт шины, с помощью которого шина крепится на ободе диска. Основная его часть — бортовое кольцо, изготовленное из множества витков проволоки.

    Сборка. На особый сборочный барабан последовательно накладываются слои каркаса и брекера, бортовые кольца, протектор с боковинами. Затем все эти детали шины соединяются в единое целое - заготовку шины.

    Вулканизация. Подготовленная заготовка помещается в пресс-форму вулканизатора. Внутрь шины под высоким давлением подается пар, нагревается наружная поверхность пресс-формы. Под давлением по боковинам и протектору прорисовывается рельефный рисунок. Происходит химическая реакция (вулканизация), которая придает резине эластичность и прочность.

Особо важным элементом производства является контроль качества . Он начинается с проверки качества каждого элемента шины еще на этапе закупки, присутствует на каждом этапе производства и завершается многоуровневым аудитом готовой продукции .

Залогом качества продукции компании Мишлен также является наличие производственной гарантии — 5 лет с даты производства. Гарантия от производителя распространяется на дефекты изготовления и материалов.

Описание ГК «Амтел-Фредештайн»

Объединяющая под своей крышей несколько предприятий, группа компаний «Амтел-Фредештайн» является лидером на рынке шинного производства Европы. В концерн входят российские заводы и промышленные предприятия Нидерландов. Российские предприятия: 2 крупных комплекса по производству шин — « -Поволжье» в Кирове и «Амтел-Черноземье» в Воронеже, 1 предприятие химической промышленности — «Амтел-Кузбасс» в Кемерово. Нидерландский завод по изготовлению шин — Vredestein Banden. Заводы в РФ — крупнейшие поставщики рынка грузовых и легковых машин, авиационной и сельскохозяйственной спецтехники, вело- и мототранспорта.

Группа компаний «Амтел-Фредештайн» в РФ — лидер рынка шин. За 2004-й год годовой оборот превысил 14 миллионов единиц продукции в натуральном выражении, рост рыночной доли — 13,4 %. 1/2 выпускаемых изделий произведена для легковых и пассажирских машин.

Описание холдинга «Сибур»

40 % всех выпускаемых в России шин сходят с конвейеров холдинга «Сибур — Русские шины». 4 шинных завода в России — это «Волтайр-Пром» (Волгоградская обл. г. Волжский), «Уралшина» (Екатеринбург), «Омскшина» (Омск), «Ярославский шинный завод» (Ярославль). Помимо перечисленных членами холдинга являются еще 2 российских предприятия — «Резинотехника» (Саранск) и «Сибур — Волжский» (Волгоградская область). Последний завод производит синтетическое волокно.

До начала 2006-го года существовала торгово-маркетинговая компания «Сибур — Русские шины», реструктуризированная в холдинг с одноименным названием. Крупная сеть предприятий является звеном сложной цепочки, подчиняясь нефтегазохимическому холдингу «Сибур-Холдинг» и дочерней структуре энергетического лидера России — «Газпрому».

Описание «Нижнекамскшины»

Основанное в 1971-м году, предприятие изначально ориентировано на удовлетворение спроса на шины отечественного производства для легковых, сельскохозяйственных и грузовых машин (выпускаемых «КамАЗом» и «ВАЗом»).

Выпуск первой партии продукции произошел в конце апреля 1973-го года. Сегодня открытое акционерное общество «Нижнекамскшина» является одним из лидеров российского шинного рынка. На предприятии налажен выпуск автомобильных шин таких марок, как и КАМА. Ассортимент типоразмеров насчитывает больше сотни моделей, над разработкой которых трудились лучшие специалисты НТЦ «Кама». Завод первым среди предприятий РФ начал поставлять шины иностранным партнерам — производителям Volkswagen, Fiat и Skoda.

ЗАО «СП «РОСАВА»

До 1996 г. шины на Украине производило производственное объединение «Белоцерковшина», преобразованное в ОАО «Росава». Позднее на базе открытого акционерного общества было создано ЗАО «СП «Росава» (1998 г.).

Предприятие сегодня — мощный производитель, обеспечивающий шинами легковые, грузовые, сельскохозяйственные машины; микро- и простые автобусы; троллейбусы и напольный транспорт. Во всех » установлена прогрессивная конструкция — металлокордный брекер и радиальная схема. В год завод производит более 5-ти миллионов легковых шин и 500 тысяч шин для сельскохозяйственного и грузового транспорта.

Описание «Ярославского шинного завода»

Функционировать Ярославский ШЗ начал еще в 1932-м году, явив собой первопроходца данной отрасли производства. Первый из всех работавших на тот момент заводов, Ярославский начал освоение синтетических пород каучука.

Завод сегодня — деловой партнер известных автопроизводителей. Среди них: УАЗ, Минский и Липецкий тракторные заводы, ГАЗ, завод имени Лихачева в Москве, МАЗ и др. Престижный российский конкурс «100 лучших товаров России» неоднократно отмечал качество продукции ЯШЗ наградами финалиста. Современный завод — динамично развивающееся производственное предприятие.

Производитель шин с Урала - «Уралшина»

На всей территории Урала можно отметить лишь одно серьезное предприятие, выпускающее шины, — ОАО «Уралшина». Год основания — военный 1943-й. Первыми видами выпускаемой продукции были массивные шины для гусеничной и бронетанковой техники. Есть у завода и признанные успехи, подтвержденные наградами Всероссийских конкурсов. Так, в 2001-м году предприятие получило Диплом за качество массивных шин «Суперэластик» в номинации конкурса «100 лучших товаров России».

Два года (1995, 1996гг.) инженерами завода разрабатывались новые радиальные шины для легковых машин марок ГАЗ и ВАЗ. Данная продукция позволяет развивать скорость более 210 км/час. Теперь годовой выпуск этих изделий перевалил за миллион экземпляров. С 1997-го года ОАО «Уралшина» поставляет на российский и зарубежный рынки такие модели шин, как «Рысь», «Снежный барс», «Северок», «Малахит», «Таганай», «Беркут» и др.

Описание завода «Омскшина»

2002-й год ознаменовался для ОАО «Омскшина» 60-летним юбилеем. Сейчас на заводе выпускается более сотни различных типоразмеров шин диагональной и радиальной конструкции практически для всех видов техники: легковой, грузовой, сельскохозяйственной, мотоциклетной и велосипедной. Ассортимент продукции включает в себя две сотни артикулов резинотехнических товаров с широкой областью применения.

Поставка омских шин идет во все российские области, 70 % реализации приходится на 4 региона: Восточно-Сибирский, Уральский, Дальневосточный и Западно-Сибирский. 20 % оборота уходит за границу — партнерам из ближнего и дальнего зарубежья. Крупными партиями шины закупаются Поволжским, Северо-Кавказским и Центральным регионами.

Описание Московского шинного завода

Ведущим заводом страны, специализирующемся на производстве пневматических моделей шин, является Московский ШЗ. Потребители продукции — отечественные автомобили, троллейбусы, автобусы и прицепы. Шины этого производителя закупаются главными отечественными автомобилестроителями — ГАЗом, ЗИЛом для своей техники. В общем объеме шинного производства России, Беларуси и Украины Московскому шинному заводу принадлежит почти 8 %. Экспорт продукции осуществляется в Польшу, Венгрию, страны СНГ, Чехию, Египет и др. страны.

Выпускаемые МШЗ шины производятся по традиционным технологиям и по экспериментальным — однослойные бескамерные изделия для легковых автомобилей.

Описание предприятия «Матадор - Омскшина»

Основная специализация совместного предприятия « -Омскшина» — выпуск бескамерных покрышек для легковых машин R14 и R13. Радиальные шины завод начал производить весной 1996-го года. Уже к концу 2001-го года годовой выпуск превысил первую партию почти в 3 раза.

Московская IV Международная выставка «Шины, РТИ и каучуки», которая проходила весной 2001 г. В Москве, удостоила завод заслуженной награды. За участие в конкурсе «Лучшая автомобильная шина на дорогах России» модель 175/70 R13 MP 12 получила третье место, а модель 205/70 R14 MP57 — «золото».

Описание Красноярского шинного завода

На территории Восточной Сибири можно отметить единственного производителя шин — Красноярский ШЗ. Более 4-х десятков лет предприятие развивается, осваивает новые технологии и следит за мировыми тенденциями в области изготовления шин. Благодаря внедрению инновационных идей, использованию опыта настоящих профессионалов, применению современных материалов и проведенной реконструкции производственных мощностей, осваивает выпуск современных моделей шин для различной техники.

Исследование потребительского спроса ложится в основу разрабатываемой маркетинговой стратегии. Каждому клиенту завода гарантирован индивидуальный подход, что является залогом долгосрочного партнерства и перспективного сотрудничества.

Описание завода «Воронежшина»

Работу свою ВШЗ начал в 1950-м году с производства 3-х типоразмеров покрышек. Постепенно ассортимент предприятия расширялся, сейчас это 38 различных современных шин для грузового, сельскохозяйственного и легкового транспорта.

Помимо этого, покрышки выпускаются для велосипедов, мотоциклов, дорожно-строительной техники и мотороллеров. Современный «Воронежшина» — крупнейший завод России, занимающий в обеспечении сельского хозяйства лидирующие позиции. Продукцию Воронежского шинного предприятия знают и ценят по всему миру. Маркировка ВШЗ означает высокое качество и надежность.

Описание АК «Сибур»

Четыре завода по изготовлению шин образуют СП «Matador». Это «Волтайр-Пром» (ОАО), «Уралшина» (ООО), «Омскшина» (ООО) и «Матадор-Омскшина» (ЗАО). Вышеперечисленные компании являются учредителями АК «Сибур» — холдинга нефтегазохимической отрасли, специализирующегося на применении полимеров, каучуков и производстве шин и сжиженного газа.

Дилер холдинга — общество с ограниченной ответственностью «Сибур — Русские шины», через которое проходят все сделки купли-продажи шин. Дилерская сеть позволяет проводить единую маркетинговую политику холдинга, контролировать шинный рынок страны.

Описание Алтайского шинного комбината

АШК — крупный производитель шин РФ. Выпускает широкий ассортимент самой различной резиновой продукции. Производство ежегодно модернизируется, благодаря вливаниям инвесторов используется современное оборудование и передовые технологии. Актуальные модели камер ежедневно покидают конвейер Алтайского шинного завода. Налажен выпуск шин для авиационной отрасли, эта линия считается перспективной, а продукция — элитной.

Политика совершенствования производства позволила наладить изготовление эксклюзивных моделей шин под маркой «Forward». Наряду с этими изделиями не сокращается и выпуск традиционных типоразмеров шин для отчественного автопрома.

Зарубежные производители шин в России

Россия — просторная страна и на ее территории действуют и строятся также иностранные шинные предприятия:

2. Город Всеволжск в Ленинградской области стал с 2005-го года местом размещения завода (Финляндия);

Технология производства шин начинается с ее разработки посредством специальной компьютерной программы рисующей различные модификации протектора и профиля шины. С помощью программы просчитывается поведение каждого из вариантов покрышки на дороге в различных ситуациях. После чего, те из шин, которые показали наилучшие результаты в моделированных дорожных тестах, нарезаются вручную на станке и проходят тестирования в реальных дорожных условиях. Затем технические показатели каждой тестируемой шины сравниваются с лучшими показателями уже существующих покрышек аналогичного класса, по необходимости проходят доводку и запускаются изделие в серийное производство.

Этапы производства автомобильных шин

1. Производство резиновой смеси

Первый этап создания любой покрышки заключается в изготовлении резиновой смеси, состав которой у каждой компании-производителя индивидуальный и хранимый в строгом секрете. Обусловливается это тем, что именно от качества резины шины зависят такие ее технические характеристики, как:

  • уровень сцепления с дорожным полотном;
  • надежность;
  • рабочий ресурс.

Сырье и расходные материалы

Технология производства шин требует наличия множества различных компонентов, материалов и химических соединений без которых невозможно само существование автомобильных покрышек. В данной статье мы перечислим лишь самые основные из этих компонентов.

Все это достигается благодаря работе химиков, подбирающих, комбинирующих компоненты и их содержание в резине в соответствии с собственным опытом и компьютерными данными. Как правило, именно от правильной дозировки компонентов зависит качество резины, так как ее состав ни для кого не секрет и включает в себя следующие компоненты:

  • каучук, составляющий основу резиновой смеси, который может быть как синтетическим, так и более дорогостоящим изопреновым. Как показывает практика, российский каучук считается лучшим в мире и по сей день используется самыми известными иностранными компаниями-производителями для изготовления своей продукции;
  • промышленная сажа, она же технический углерод, придающая резине характерный цвет, и отвечающая за ее прочность и износостойкость, так как именно сажа выполняет молекулярное соединение в процессе вулканизации;
  • кремниевая кислота, являющаяся аналогом сажи в изготовлении шин зарубежными производителями и повышающая уровень сцепления покрышки с мокрым дорожным полотном;
  • масла и смолы, являющиеся вспомогательными компонентами и выполняющими роль смягчителей резины.
  • вулканизирующие агенты, в частности сера и вулканизационные активаторы.

2.

Производство компонентов шины

Технология производства шин предусматривает такой этап производства как изготовление компонентов шины, представляющий собой несколько таких параллельных процессов как:

3. Сборка автомобильной покрышки и вулканизация

Сборка шины является третьим этапом производства и выполняется на сборочном барабане методом последовательного наложения поверх друг друга слоев каркаса, борта и протектора с боковинами шины, после чего следует процедура вулканизации.

Технология производства автомобильных шин, видео-обзор:

Другие похожие статьи на Технология производства автомобильных шин

Производство формовых РТИ осуществляется на оборудовании для прессования, с помощью которого вулканизированную резину преобразовывают в детали.

Гидравлический пресс является основным типом оборудования для изготовления деталей из резины. Принцип действия гидравлического пресса состоит в том, что жидкость, находящаяся под давлением и заключенная в замкнутый сосуд, оказывает одинаковое давление на стенки сосуда.

Попадая в рабочий цилиндр пресса, и заполняя его, жидкость с одинаковой силой давит на дно цилиндра, его стенки, а также на торцевую поверхность плунжера, вставленного в цилиндр.

Гидравлические прессы для РТИ представляют собой оборудование, в котором рабочий процесс осуществляется благодаря жидкости, находящейся под давлением.

Изделия, изготовленные формовым способом широко используются на приборо- и машиностроительных предприятиях, где постоянно производится вырезка деталей из сырой и листовой резины, которая подвергается вулканизации и прессованию.

Процесс иготовления НА ГИДРАВЛИЧЕСКИХ ПРЕССАХ.

  1. Сначала осуществляется подготовка к работе, т.е. пресс-формы подвергают нагреву до 150 ± 5°, а затем они смазываются специальным раствором.
  2. После сушки и смазывания пресс-форма готова к укладке арматуры и сырой резины. Если во время прессования задействованы открытые пресс-формы, то арматура помещается в гнёзда, а резина занимает оставшееся место. При использовании литьевых форм, арматура по-прежнему укладывается в них, а для сырой резины отведена загрузочная камера.
  3. Для прессования армированных деталей необходимо удельное давление в 50-60 МПа, для не армированных достаточно - 25-30 МПа.
  4. Вулканизация заключается в выдержке резиновой заготовки и арматуры на прессе на протяжении 0,5-1 ч, при этом температура должна быть не меньше 145 ± 3°. Её продолжительность, а также рабочую температуру необходимо подобрать опытным или экспериментальным путём, так как эти величины зависят от конфигурации и толщины стенок детали, а также марки обрабатываемой резины.
  5. Завершив операцию вулканизации необходимо снять пресс-форму с пресса, разобрать, вынуть готовую деталь, почистить рабочую оснастку, поместить в неё новую арматуру с сырой резиной для изготовления следующей детали.
  6. Для обрезки образовавшегося облоя используются специальные ножницы или просечки. Обязательно все детали проверяются специалистами отдела технического контроля (ОТК).

Что такое каучук

Кроме сложных веществ наподобие полиэтиленов, представляющих из себя высокомолекулярные полимеры, существует класс химических веществ, который образован сопряжёнными диенами.

После процесса полимеризации диенов образуются новые химические вещества, имеющие высокомолекулярную структуру, называемые каучуками .

Каучук был уже известен в конце 15 веке в северной Америке. Именно индейцы в то время использовали его для изготовления обуви, небьющихся вещей и посуды. А получали тогда его из сока растения гевеи, который называли – «слёзы дерева».

Что касается европейцев, то о каучуке узнали впервые только в момент открытия Америки. Именно Кристофор Колумб первым узнал о его свойствах и получении. В Европе каучук долгое время не мог найти себе применение. В 1823 г в первые было предложено использование этого материала для изготовления водонепроницаемых плащей и одежды. Каучуком и органическим растворителем пропитывали ткань, таким образом, ткань приобретала водостойкие свойства. Но, конечно же, был замечен и недостаток, который заключался в том, что ткань, пропитанная каучуком, прилипала в жаркую погоду к коже, а при морозе – растрескивалась.

Отличие каучука и резины

Через 10 лет после первого применения натурального каучука и более детального изучения его химических физических свойств было предложено вводить каучук в оксиды кальция и магния. А ещё через 5 лет после изучения свойств нагретой смеси оксидов свинца и серы с каучуком научились получать резину . Сам процесс превращения каучука в резину назвали вулканизацией .

Конечно же, каучук отличается от резины .

Резина – это «сшиты» полимер, который способен распрямляться и снова сворачиваться при растяжении и при действии механической нагрузки. Резина – это также «сшитые» макромолекулы, которые не способы к кристаллизации при охлаждении и не плавятся при нагревании. Тем самым резина – более универсальный материал, чем каучук, и способен сохранять свой механические и физические свойства про более широком диапазоне температур.

В начале 20 века, когда появился первый автомобиль, спрос на резину значительно возрос. В то же время возрос спрос и на натуральный каучук , так как на тот момент вся резина изготавливалась из сока тропических деревьев. Например, чтобы получить тонну резины, необходимо было обработать почти 3 тонны тропических деревьев, при этом работой было занято одновременно более 5 тысяч человек, причём такую массу резины могли получить только через год.

Поэтому, резина и натуральный каучук считались достаточно дорогим материалом.

Только в конце 20х годов русским учёным Лебедевым С.В. при химической реакции — полимеризации бутадиена-1,3 на натриевом катализаторе были получены образцы первого натрий-бутадиенового синтетического каучука.

Кстати, из курса физики 8-ого класса мы, вероятно, впервые познакомились с эбонитовой палочкой . Но что такое эбонит . Как оказывается, эбонит — это производная от процесса вулканизации каучука : если при вулканизации каучука добавить серу (около 32% от массы), то в результате получается твёрдый материал — этот материал и есть эбонит !

Одним из достаточно дешёвых способов получения бутадиена-1,3, является его получение из этилового спирта. Но только в 30-х годах было налажено промышленное производство каучука в России.

В середине 30-х годов 20 века научились производить сополимеры, представляющие полимеризованный 1,3-бутадиен. Химическая реакция производилась в присутствии стирола или некоторых других химических веществ. Вскоре получаемые сополимеры начали с большими темпами вытеснять каучуки, которые ранее широко использовались для производства шин. Каучук бутадиен-стирольный получил широкое применение для производства шин легковых автомобилей, но для тяжёлого транспорта — грузовых автомобилей и самолётов, использовался натуральный каучук (или изопреновый синтетический).

В середине 20 века после получения нового катализатора Циглера - Натты был получен синтетический каучук , который по своим свойствам эластичности и прочности значительно выше, чем все ранее известные каучуки, — был получен полибутадиен и полиизопрен. Но как оказалось, к общему удивлению полученный синтетический каучук по своим свойствам и строению подобен натуральному каучуку! А к концу 20 века натуральный каучук был почти полностью вытеснен синтетическим.

Свойства каучука

Все хорошо знают, что при нагревании материалы способны расширяться. В физике даже имеются коэффициенты температурного расширения, для каждого взятого материала этот коэффициент свой. Расширению поддаются твёрдые тела, газы, жидкости. Но что, если температура увеличилась на несколько десятков градусов?! Для твёрдых тел изменений мы не почувствуем (хотя они есть!). Что касается высокомолекулярных соединений, например полимеров, их изменение сразу становится заметным, особенно если речь идёт об эластичных полимерах, способных хорошо тянуться. Заметным, да ещё к тому же с совсем обратным эффектом!

Ещё в начале 19 века английские учёные обнаружили, что растянутый жгут из нескольких полосок натурального каучука при нагревании уменьшался (сжимался), а вот при охлаждении — растягивался. Опыт был подтверждён в середине 19 века.

Вы сами с лёгкостью можете повторить этот опыт, подвесив на резиновую ленту грузик. Она растянется под его весом. Потом обдуйте её феном — увидите, как она сожмётся от температуры!

Почему так происходит?! К этому эффекту можно применить принцип Ле Шателье , который гласит, что если воздействовать на систему, находящуюся в равновесии, то это приведёт к изменению равновесия самой системы, а это изменение будет противодействовать внешним силовым факторам. То есть если на растянуть под действием груза жгуты каучука (система в равновесии) подействовать феном (внешнее воздействие), то система выйдет из равновесия (жгут будет сжиматься), причём сжатие — действие направлено в обратную сторону от силы тяжести груза!

При очень резком и сильном растяжении жгута он нагреется (нагрев может на ощупь быть и незаметным), после растяжения система будет стремиться принять равновесное состояние и постепенно охладится до окружающей температуры. Если жгуты каучука также резко сжать — охладится, далее будет нагреваться до равновесной температуры.

Что происходит при деформации каучука?

При проведённых исследованиях оказалось, что с точки зрения термодинамики, никакого изменения внутренней энергии при различных положениях (изгибах) этих каучуковых жгутов не происходит.

А вот если растянуть — то внутренняя энергия увеличивается из-за возрастания скорости движения молекул внутри материала. Из курса физики и термодинамики известно, что изменение скорости движения молекул материала (тот же каучук) отражается на температуре самого материала.

дальнейшем, растянутые жгуты каучука будут постепенно охлаждаться, так как движущиеся молекулы будут отдавать свою энергию, например, рукам и другим молекулам, то есть произойдёт постепенное выравнивание энергии внутри материала между молекулами (энтропия будет близка к нулю).

И вот теперь, когда наш жгут каучука принял температуру окружающей среды, можно снять нагрузку. Что при этом происходит?! В момент снятия нагрузки молекулы каучука ещё имеют низкий уровень внутренней энергии (они же ей поделились при растяжении!). Каучук сжался — с точки зрения физики была совершена работы за счёт собственной энергии, то есть своя внутренняя энергия (тепловая) была затрачена на возврат в исходное положение. Естественно ожидать, что температура должна понизится, — что и происходит на самом деле!

Резина — как уже говорилось, высокоэластичный полимер. Её структура состоит из хаотично расположенных длинных углеродным цепочек. Крепление таких цепочек между собой осуществлено с помощью атомов серы. Углеродные цепочки в нормальном состоянии находятся в скрученном виде, но если резину растянуть, то углеродные цепочки будут раскручиваться.

Можно провести интересный опыт с резиновыми жгутами и колесом. Вместо велосипедных спиц в велосипедном колесе использовать резиновые жгуты. Такое колесо подвесить, чтобы оно могло свободно вращаться. В случае, если все жгуты одинаково растянуты, то втулка в центре колеса будет расположена строго по его оси. А теперь попробуем нагреть горячим воздухом какой-нибудь участок колеса. Мы увидим, что та часть жгутов, которая нагрелась — сожмётся и сместит втулку в свою сторону. При этом произойдёт смещение центра тяжести колеса и соответственно колесо развернётся. После его смещения действию горячего воздуха подвергнутся следующие жгуты, что в свою очередь приведёт к их нагреванию и снова — к повороту колеса. Таким образом, колесо может непрерывно вращаться!

Это опыт подтверждает факт того, что при нагревании каучук и резина будут сжиматься, а при охлаждении — растянутся!

Синтетическая резина

C траница 1

Синтетические резины менее, чем естественные резины, подвержены разбуханию в присутствии масла и большинства растворителей.  

Синтетические резины широко применяют для изготовления уплотнений, препятствующих утечке масла из картеров зубчатых редукторов. Хотя иногда в спецификациях на редукторные масла содержатся требования, ограничивающие величину набухания и других повреждений для определенных марок резины, из которых изготовлены сальники, предсказать поведение этих материалов при разнообразных режимах работы практически невозможно.  

Синтетическая резина хуже естественной по сопротивляемости разрыву, но меньше набухает при соприкосновении с маслом, чем естественная.  

Синтетические резины значительно более устойчивы к действию ультрафиолетовых лучей.

Свет не оказывает заметного влияния на поверхность дерева, но продолжительная эксплуатация деталей, изготовленных из дерева, при облучении их ультрафиолетовыми лучами может привести к некоторым изменениям поверхностных слоев древесины.  

Синтетическая резина СКН-40 (бутадиеннитрильный каучук) также относится к бензостойким материалам и может применяться для облицовкл резервуаров.  

Обычные синтетические резины или смеси буна N, буна S, неопрен, бутил, каучук и натуральная резина обладают характеристиками, позволяющими изготовлять детали формовым способом с использованием стандартного оборудования. Однако разработанные совсем недавно синтетические резины, а также большинство силиконовых материалов, имеют на 3 — 5 % большую усадку, чем стандартные резины. В этих случаях О-образные кольца, отформованные из новых материалов на имеющемся оборудовании, имеют размеры на 3 — 5 % меньше, чем предусмотренные стандартом. Материалы с большой усадкой — это силиконы, витон, фтористые силиконы и полиакрилаты.  

Разрыв синтетической резины происходит значительно легче, чем естественной.  

Марка синтетической резины, которая берется для тканево-резиновых манжет, зависит от рабочей среды и температуры. Наиболее обычными базовыми полимерами являются полихлоро-прен, буна N, буна S, бутил и витон. Полихлоропрен и буна N применяются для уплотнения масел, буна S — для воды, бутил — при уплотнении сложных эфиров фосфорной кислоты. Витон используется в условиях высоких рабочих температур.  

Уплотнения из синтетических резин могут работать в масляной среде при окружных скоростях на поверхности трения до 20 м / сек. Однако применять высокие скорости и температуры без крайней необходимости не рекомендуется, так как это снижает надежность уплотнения.  

Шары из синтетической резины изготавливаются полыми. В корпусе устанавливается клапан /, через который закачивается жидкость с таким расчетом, чтобы диаметр шара превысил на 2 % внутренний диаметр трубы.  

Уплотнения из синтетических резин могут работать при окружных скоростях на поверхности трения до 20 м / сек, а в отдельных случаях и до 25 м / сек. В зависимости от сорта резины они могут быть пригодны также для работы при температурах на поверхности трения выше 150 С. Так, например, манжеты из силиконовой резины допускают при скорости 25 м / сек температуру 180 С.  

Коэффициент трения синтетической резины по металлу обычно увеличивается с увеличением скорости. От чистоты уплотняемой поверхности коэффициент трения зависит мало, но чистота поверхности существенно влияет на износ уплотнителей.  

Публикации по теме