Скафандры космонавтов: назначение, устройство. Первый скафандр

Федеральное государственное казённое общеобразовательное учреждение

«Ульяновское гвардейское суворовское военное училище

Министерства обороны Российской Федерации»

Конкурс «Через тернии к звездам»,

  1. Приложения

Приложение 1

Скафандр космонавта

Скафандр космонавта для выхода в открытый космос:

1 – страховочный фал; 2 – пульт управления системой жизнеобеспечения; 3 – гермошлем; 4 – ранцевая система жизнеобеспечения

Приложение 2

Эволюция скафандров

В этих скафандрах российские дворняжки первые из землян преодолели силу притяжения планеты

Скафандр СК-1 первого космонавта Юрия Гагарина, в котором он 12 апреля 1961 года совершил виток вокруг Земли.

В скафандре «Беркут» А.Леонов выходил в открытый космос. Скафандр рассчитан на два значения давления газа: рабочее 400гПа и аварийное 270 гПа.

Российские скафандры «Орлан» для выхода в открытый космос

В наспинном ранце « Орлана» размещаются баллоны с газовой смесью для дыхания, насосы, теплоприемник и другие устройства жизнеобеспечения.

Новые скафандры «Орлан-МКС» для российских космонавтов доставят на Международную космическую станцию осенью 2015 года. Они заменят используемые сейчас «Орлан-МК».

Приложение 3

Сравнительные характеристики скафандров

    СК-1 (спасательный скафандр-1) - первый скафандр , который был разработан в СССР для полётов первых космонавтов на космических кораблях серии « Восток » и использовался в 1961-1963 годах.

    «Беркут» - тип универсального космического скафандра . Скафандр был разработан в СССР в 1964-1965 годах и предназначался для обеспечения безопасного выхода человека в открытый космос и спасения при разгерметизации космического корабля. Относится к скафандрам «мягкого» типа, то есть, не имеющим жёсткого каркаса. [ 4 ]

    «Орлан-МКС» - тип космического скафандра , созданного в СССР для осуществления безопасного пребывания и работы

    Орлан-ДМА

    Орлан-М

    Орлан-МК (модернизированный, компьютеризированный)

    Орлан-МКС (модернизированный, компьютеризированный, синтетический)

    Эксплуатация

    Салют-6, 1977-1979; Салют-7, 1982-1984г

    Салют-7, Мир,

    1985-1988г

    Мир, 1988-1997

    Мир, 1997-2000; МКС, 2001-2009г

    МКС, с 2009-настоящее время

    МКС, планируется с 2015

    Производитель

    НПП «Звезда»

    НПП «Звезда»

    НПП «Звезда»

    НПП «Звезда»

    НПП «Звезда»

    НПП «Звезда»

    Рабочее

    давление

    400 гПа

    400 гПа

    400 гПа

    400 гПа

    400 гПа

    400 гПа

    Масса

    73,5 кг

    88 кг

    105 кг

    112 кг

    120 кг

    110 кг

    Время

    автономности

    5 часов

    6 часов

    7 часов

    7 часов

    7-8

    7 часов

    Назначение

    Работа в открытом космосе

    Работа в открытом космосе

    Работа в открытом космосе

    Работа в открытом космосе

    Работа в открытом космосе

    Основные отличия:

    Автоматическая система терморегулирования.

    Замена резиновой оболочки на полиуретановую. Использование нового материала позволит увеличить срок службы скафандров на орбите;

    Автоматизация подготовки скафандра к выходу в открытый космос.

    Приложение 6

    Костюм будущего

Скафандр - это не просто костюм. Это космический корабль, повторяющий форму тела.

И появился он задолго до первых полётов в космос. В начале ХХ века учёные уже знали, что условия в космосе и на других планетах сильно отличаются от земных.

Для будущих космических полётов нужно было придумать костюм, который защищал бы человека от воздействия убийственной внешней среды.

Скафандр - это чудо техники, космическая станция в миниатюре… Вам-то кажется, что скафандр переполнен, как дамская сумочка, но на самом деле всё сделано так компактно, что просто красота… В общем, скафандр мой был похож на первоклассный автомобиль, а шлем - на швейцарские часы.
Роберт Хайнлайн «Имею скафандр - готов путешествовать»

Предтечи скафандра

Название «скафандр» происходит от французского слова, предложенного в 1775 году аббатом-математиком Жаном-Батистом де Ла Шапелем. Естественно, о полётах в космос в конце XVIII века речи не шло - учёный предложил называть так водолазное снаряжение. Само слово, которое можно перевести с греческого примерно как «лодко-человек», неожиданно вошло в русский язык с приходом космической эры. В английском же языке скафандр так и остался «космическим костюмом» (space suit).

Водолазные скафандры Жана-Батиста де Ла Шапеля.

Чем выше человек взбирался, тем сильнее назревала необходимость в костюме, который поможет ему сделать ещё один шаг в сторону неба. Если на высоте шести-семи километров достаточно кислородной маски и тёплой одежды, то после десятикилометровой отметки давление падает настолько, что лёгкие перестают усваивать кислород. Чтобы выжить в таких условиях, нужны герметичная кабина и компенсирующий костюм, который при разгерметизации сжимает человеческое тело, на какое-то время заменяя ему внешнее давление.

Однако если подняться ещё выше, то не поможет и эта болезненная процедура: пилот погибнет от кислородного голодания и декомпрессионных расстройств. Единственное решение - сделать полностью герметичный скафандр, в котором внутреннее давление поддерживается на достаточном уровне (обычно не менее 40% от атмосферного, что соответствует высоте семи километров). Но и тут хватает проблем: надутый скафандр затрудняет движения, в нём почти невозможно совершать точные манипуляции.

Английский физиолог Джон Холден опубликовал в 1920-е годы серию статей, в которых предложил использовать водолазные костюмы для защиты воздухоплавателей. Он даже построил прототип такого скафандра для американского воздухоплавателя Марка Риджа. Последний испытал костюм в барокамере при давлении, соответствующем высоте 25,6 километра. Однако аэростаты для полётов в стратосфере всегда стоили дорого, и Риджу не удалось собрать средства для установления мирового рекорда с помощью костюма Холдена.

В Советском Союзе скафандрами для высотных полётов занимался инженер Института авиационной медицины Евгений Чертовский. В период с 1931 по 1940 год он разработал семь моделей герметичных костюмов. Все они были далеки от совершенства, но зато Чертовский первым в мире решил проблему, связанную с подвижностью. После наддува скафандра пилоту требовалось большое усилие, чтобы просто согнуть конечность, поэтому в модели Ч-2 инженер применил шарниры. Модель Ч-3, созданная в 1936 году, содержала в себе практически все элементы, которые есть в современном космическом скафандре, включая впитывающее бельё. Ч-3 была испытана на тяжёлом бомбардировщике ТБ-3 19 мая 1937 года.

Первые высотные скафандры СССР: Ч-3 (1936) и СК-ЦАГИ-5 (1940)

В 1936 году на экраны вышел фантастический фильм «Космический рейс», в создании которого участвовал Константин Циолковский. Кино о грядущем покорении Луны так захватило молодых инженеров Центрального аэрогидродинамического института (ЦАГИ), что они принялись активно работать над прототипами космических скафандров. Первый образец под индексом СК-ЦАГИ-1 был сконструирован, изготовлен и испытан на удивление быстро - всего лишь за один 1937 год. Скафандр и впрямь производил впечатление чего-то внеземного: верхняя и нижняя части соединялись с помощью поясного разъёма; для облегчения подвижности появились плечевые шарниры; оболочка состояла из двух слоёв прорезиненной ткани. На второй модели была установлена автономная регенерационная система, рассчитанная на шесть часов непрерывной работы. В 1940 году на основе полученного опыта инженеры ЦАГИ создали последний довоенный советский скафандр СК-ЦАГИ-8. Его испытали на истребителе И-153 «Чайка».

После войны инициатива перешла к Лётноисследовательскому институту (ЛИИ). Его специалистам было поручено создать костюмы для пилотов авиации, которая быстро покоряла новые высоты и скорости. Серийное производство одному институту было не потянуть, и в октябре 1952 года инженер Александр Бойко создал специальный цех на заводе №918 в подмосковном Томилино. Ныне это предприятие известно как НПП «Звезда». Именно там был создан скафандр для Юрия Гагарина.

Скафандры для собак (на фото - Белка) делались попроще: животным не требовалось выполнять сложную работу.

Первые полёты

Когда в конце 1950-х годов советские инженеры-конструкторы приступили к проектированию первого космического корабля «Восток», они изначально планировали, что человек полетит в космос без скафандра. Пилота должны были поместить в герметичный контейнер, который выстреливался бы из спускаемого аппарата перед приземлением. Однако такая схема оказалась громоздкой и требовала длительных испытаний, поэтому в августе 1960 года бюро Сергея Королёва переработало внутреннюю компоновку «Востока», заменив контейнер катапультируемым креслом. Соответственно, для защиты будущего космонавта в случае разгерметизации требовалось быстро создать подходящий костюм. Времени на стыковку скафандра с бортовыми системами не оставалось, поэтому решили сделать систему жизнеобеспечения, размещаемую непосредственно в кресле.

Скафандр, получивший обозначение СК-1, был основан на высотном костюме «Воркута», который предназначался для пилотов истребителя-перехватчика Су-9. Только шлем пришлось полностью переделать. Например, в нём был установлен специальный механизм, управляемый датчиком давления: если оно резко падало, механизм мгновенно захлопывал прозрачное забрало.

Первый космонавт в не первом скафандре: Юрий Гагарин в СК-1.

Каждый скафандр изготавливался по индивидуальной мерке. К первому космическому полёту «обшить» весь отряд космонавтов, в то время состоявший из двадцати человек, не получалось. Поэтому сначала выделили шестерых, которые показали наилучший уровень подготовки, а затем - тройку «лидеров»: Юрия Гагарина, Германа Титова и Григория Нелюбова. Для них скафандры изготовили в первую очередь.

Один из скафандров СК-1 побывал на орбите раньше космонавтов. Во время беспилотных испытательных запусков корабля «Восток», проведённых 9 и 25 марта 1961 года, на борту вместе с подопытными дворнягами находился человекоподобный манекен в скафандре, прозванный «Иваном Ивановичем». В его груди была установлена клетка с мышами и морскими свинками. Под прозрачное забрало шлема положили табличку с надписью «Макет», чтобы случайные свидетели приземления не приняли его за инопланетное вторжение.

Скафандр СК-1 использовался в пяти пилотируемых полётах кораблей «Восток». Только для полёта «Востока-6», в кабине которого находилась Валентина Терешкова, был создан скафандр СК-2, учитывающий особенности женской анатомии.

Валентина Терешкова в «дамском» скафандре СК-2 . Первые советские скафандры были ярко-оранжевыми, чтобы приземлившегося лётчика было легче найти. Но скафандрам для открытого космоса лучше подходит отражающий все лучи белый.

Американские конструкторы программы «Меркурий» пошли по пути конкурентов. Однако были и отличия, которые следовало учесть: маленькая капсула их корабля не позволяла долго оставаться на орбите, а в первые запуски должна была всего лишь достичь границы космического пространства. Скафандр Navy Mark IV был создан Расселом Колли для пилотов военно-морской авиации, причём он выгодно отличался от других моделей гибкостью и сравнительно небольшим весом. Чтобы адаптировать скафандр к космическому кораблю, пришлось внести несколько изменений - прежде всего в устройство шлема. У каждого астронавта было три индивидуальных скафандра: для обучения, для полёта и резервный.

Скафандр программы «Меркурий» продемонстрировал свою надёжность. Только однажды, когда капсула «Меркурия-4» начала тонуть после приводнения, скафандр едва не погубил Вирджила Гриссома - астронавт едва успел отсоединиться от системы жизнеобеспечения корабля и выбраться наружу.

Выход в открытый космос

Первые скафандры были аварийно-спасательными, присоединялись к системе жизнеобеспечения корабля и не позволяли выйти в открытый космос. Специалисты понимали, что если космическая экспансия продолжится, то одним из обязательных этапов станет создание автономного скафандра, в котором можно будет работать в открытом космосе.

Сначала под свою новую пилотируемую программу «Джемини» американцы хотели доработать «меркурианский» скафандр Mark IV, но к тому моменту был полностью готов высотный герметичный костюм G3C, созданный под проект ракетоплана Х-15, - его и взяли за основу. Всего в ходе полётов «Джемини» использовались три модификации - G3C, G4C и G5C, причём для выхода в открытый космос были пригодны только скафандры G4C. Все скафандры были подключены к системе жизнеобеспечения корабля, однако на случай проблем было предусмотрено автономное устройство ELSS, ресурсов которого хватало на поддержку астронавта в течение получаса. Впрочем, астронавтам не пришлось им воспользоваться.

Именно в скафандре G4C совершил выход в открытый космос Эдвард Уайт, пилот корабля «Джемини-4». Произошло это 3 июня 1965 года. Но к тому времени он не был первым - за два с половиной месяца до Уайта в свободный полёт рядом с кораблём «Восход-2» отправился Алексей Леонов.

Экипаж «Восхода-2» , Павел Беляев и Алексей Леонов, в скафандрах «Беркут».

Корабли «Восход» создавались для достижения космических рекордов. В частности, на «Восходе-1» в космос впервые полетел экипаж из трёх космонавтов - для этого из шарообразного спускаемого аппарата удалили катапультируемое кресло, а сами космонавты отправились в полёт без скафандров. Корабль «Восход-2» готовили для выхода одного из членов экипажа в открытый космос, и тут без герметичного костюма было не обойтись.

Специально для исторического полёта был разработан скафандр «Беркут». В отличие от СК-1, новый костюм имел вторую герметичную оболочку, шлем со светофильтром и заплечный ранец с кислородными баллонами, запаса которых хватало на 45 минут. Кроме того, космонавт был соединён с кораблём семиметровым фалом, в состав которого входили амортизирующее устройство, стальной трос, шланг аварийной подачи кислорода и электрические провода.

Космический корабль «Восход-2» стартовал 18 марта 1965 года, и в начале второго витка Алексей Леонов покинул борт. Тут же командир экипажа Павел Беляев торжественно объявил на весь мир: «Внимание! Человек вышел в космическое пространство!» Изображение парящего на фоне Земли космонавта транслировалось по всем телеканалам. Леонов находился в пустоте 23 минуты 41 секунду.

Хотя американцы уступили первенство, они быстро и заметно обогнали советских конкурентов по количеству выходов в открытый космос. Операции вне корабля осуществлялись во время полётов «Джемини-4, -9, -10, -11, 12». Следующий советский выход состоялся только в январе 1969 года. В том же году американцы высадились на Луну.

Скафандр G4C с носимым устройством ELSS.

Рекорды в вакууме

Сегодня выходами в космос никого не удивишь: на конец августа 2013 года зафиксировано 362 выхода общей продолжительностью 1981 час 51 минута (82,5 суток, почти три месяца). И всё же здесь есть свои рекорды.

Абсолютным рекордсменом по количеству часов, проведённых в открытом космосе , вот уже много лет остаётся российский космонавт Анатолий Соловьёв - он совершил 16 выходов общей продолжительностью 78 часов 46 минут. На втором месте - американец Майкл Лопес-Алегриа; он совершил 10 выходов общей продолжительностью 67 часов 40 минут.

Самым длительным стал выход американцев Джеймса Восса и Сьюзан Хелмс 11 марта 2001 года, продолжавшийся 8 часов 56 минут.

Максимальное количество выходов за один полёт - семь; этот рекорд принадлежит россиянину Сергею Крикалёву.

Дольше всех на поверхности Луны находились астронавты «Аполлона-17» Юджин Сернан и Харрисон Шмитт: за три выхода в декабре 1972 года они провели там 22 часа 4 минуты.

Если сравнивать не космонавтов, а страны, то здесь безусловно лидируют США: 224 выхода, 1365 часов 53 минуты вне корабля.

Скафандры для Луны

На Луне требовались совсем другие скафандры, нежели на земной орбите. Скафандр должен был стать полностью автономным и позволять человеку работать вне корабля несколько часов. Он должен был обеспечить защиту от микрометеоритов и, главное, от перегрева под прямыми солнечными лучами, ведь высадки планировались в лунные дни. Кроме того, в NASA построили специальный наклонный стенд, чтобы выяснить, как пониженная гравитация влияет на движение астронавтов. Оказалось, что характер ходьбы резко меняется.

Скафандр для полёта на Луну совершенствовался в ходе всей программы «Аполлон». Первый вариант A5L не удовлетворил заказчика, и вскоре появился скафандр A6L, куда была добавлена теплоизоляционная оболочка. После пожара 27 января 1967 года на корабле «Аполлон-1», приведшего к гибели трёх астронавтов (в том числе упомянутых выше Эдварда Уайта и Вирджила Гриссома), скафандр доработали до огнестойкой версии A7L.

По своей конструкции A7L был цельным, многослойным костюмом, закрывавшим туловище и конечности, с гибкими сочленениями, сделанными из резины. Металлические кольца на вороте и манжетах рукавов предназначались для установки герметичных перчаток и «шлема-аквариума». Все скафандры имели вертикальную «молнию», которая шла от шеи до паха. A7L обеспечивал четырёхчасовую работу астронавтов на Луне. На всякий случай в ранце находился ещё и резервный блок жизнеобеспечения, рассчитанный на полчаса. Именно в скафандрах A7L астронавты Нил Армстронг и Эдвин Олдрин ступили на Луну 21 июля 1969 года.

В трёх последних полётах лунной программы использовались скафандры A7LB. Они отличались двумя новыми сочленениями на шее и поясе - такая доработка понадобилась для того, чтобы облегчить вождение лунного автомобиля. Позднее этот вариант скафандров использовался на американской орбитальной станции «Скайлэб» и при международном полёте «Союз-Аполлон».

Советские космонавты тоже собирались на Луну. И для них приготовили скафандр «Кречет». Поскольку по задумке высаживаться на поверхность должен был только один член экипажа, для скафандра выбрали полужёсткий вариант - с дверцей на спине. Космонавт должен был не надевать костюм, как в американском варианте, а буквально влезать в него. Специальная система тросиков и боковой рычаг позволяли закрыть за собой крышку. Вся система жизнеобеспечения располагалась в откидной дверце и работала не снаружи, как у американцев, а в нормальной внутренней атмосфере, что упрощало конструкцию. Хотя «Кречет» так и не побывал на Луне, наработки по нему использовались при создании других моделей.

Хищные птицы космоса

В 1967 году начались полёты новых советских кораблей «Союз». Они должны были стать основным транспортным средством при создании долговременных орбитальных станций, поэтому потенциальное время, которое человек должен был провести вне корабля, неизбежно увеличивалось.

Скафандр «Ястреб» был в основном похож на «Беркут», который использовался на корабле «Восход-2». Различия были в системе жизнеобеспечения: теперь дыхательная смесь циркулировала внутри скафандра по замкнутому контуру, где очищалась от углекислоты и вредных примесей, подпитывалась кислородом и охлаждалась. В «Ястребах» космонавты Алексей Елисеев и Евгений Хрунов переходили из корабля в корабль во время полётов «Союза-4» и «Союза-5» в январе 1969 года.

На орбитальные станции космонавты летали без спасательных скафандров - за счёт этого удавалось увеличить запасы на борту корабля. Но однажды космос не простил такой вольности: в июне 1971 года из-за разгерметизации погибли Георгий Добровольский, Владислав Волков и Виктор Пацаев. Конструкторам пришлось срочно создавать новый спасательный скафандр «Сокол-К». Первый полёт в этих скафандрах был проведён в сентябре 1973 года на «Союзе-12». С тех пор космонавты, отправляясь в полёт на отечественных кораблях «Союз», всегда используют варианты «Сокола».

Примечательно, что скафандры «Сокол-КВ2» были приобретены китайскими торговыми представителями, после чего в Китае появился собственный космический костюм, именуемый, как и пилотируемый корабль, «Шэньчжоу» и очень похожий на российский образец. В таком скафандре отправился на орбиту первый тайконавт Ян Ливэй.

Для выхода в открытый космос скафандры из серии «Сокол» не годились, поэтому, когда Советский Союз начал запускать орбитальные станции, позволяющие сооружать различные модули, понадобился и соответствующий защитный костюм. Им стал «Орлан» - автономный полужёсткий скафандр, созданный на основе лунного «Кречета». В «Орлан» тоже надо было залезать через дверцу в спине. Кроме того, создатели этих скафандров сумели сделать их универсальными: теперь штанины и рукава подгонялись под рост космонавта.

«Орлан-Д» впервые был опробован в открытом космосе в декабре 1977 года на орбитальной станции «Салют-6». С тех пор эти скафандры в разных модификациях использовались на «Салютах», комплексе «Мир» и Международной космической станции (МКС). Космонавты благодаря скафандру могут поддерживать связь друг с другом, с самой станцией и с Землёй.

Скафандры серии «Орлан» оказались настолько хороши, что китайцы сделали по их образцу свой «Фэйтянь» для выхода в открытый космос. 27 сентября 2008 года эту операцию в ходе полёта корабля «Шэньчжоу-7» проделал тайконавт Чжай Чжиган. Характерно, что при выходе его страховал напарник Лю Бомин в купленном у России «Орлане-М».

Опасный космос

Выход в открытый космос опасен по множеству причин: глубокий вакуум, экстремальные температуры, солнечная радиация, космический мусор и микрометеориты. Серьёзную опасность представляет и удаление от космического корабля.

Первый опасный инцидент произошёл ещё с Алексеем Леоновым в марте 1965 года. Выполнив программу, космонавт не смог вернуться на корабль из-за того, что его скафандр раздулся. Совершив несколько попыток войти в шлюз ногами вперёд, Леонов решил развернуться. При этом он снизил уровень избыточного давления в скафандре до критического, что позволило ему втиснуться в шлюзовую камеру.

Инцидент с повреждением скафандра произошёл при полёте шаттла «Атлантис» в апреле 1991 года (миссия STS-37). Маленький прут проколол перчатку астронавта Джерри Росса. По счастливой случайности разгерметизации не произошло - прут застрял и «запечатал» образовавшееся отверстие. Прокол даже не заметили до тех пор, пока астронавты не вернулись на корабль и не начали проверку скафандров.

Ещё один потенциально опасный случай произошёл 10 июля 2006 года во время второго выхода в открытый космос астронавтов шаттла «Дискавери» (полёт STS-121). От скафандра Пирса Селлерса отсоединилась специальная лебёдка, которая не давала астронавту улететь в пространство. Вовремя заметив проблему, Селлерс с напарником сумели прикрепить устройство обратно, и работа завершилась благополучно.

Скафандры будущего

Под программу многоразовых космических кораблей «Спейс Шаттл» американцы разработали несколько скафандров. При испытаниях новой ракетно-космической системы астронавты облачались в SEES - спасательный скафандр, позаимствованный у военной авиации. В дальнейших полётах его сменил вариант LES, а затем - более совершенная модификация ACES.

Для выходов в открытый космос был создан скафандр EMU. Он состоит из верхней жёсткой части и мягких штанов. Как и «Орлан», EMU могут многократно использовать разные космонавты. В нём можно спокойно работать в космосе семь часов, ещё полчаса даёт резервная система жизнеобеспечения. За состоянием скафандра следит специальная микропроцессорная система, которая предупреждает астронавта, если что-то идёт не так. Первый EMU побывал на орбите в апреле 1983 года на корабле «Челленджер». Сегодня скафандры этого типа активно используются на МКС наряду с российскими «Орланами».

Американцы считают, что EMU морально устарел. Перспективная космическая программа NASA включает полёты на астероиды, возвращение на Луну и экспедицию на Марс. Поэтому необходим скафандр, который объединял бы в себе положительные качества спасательных и рабочих костюмов. Скорее всего, он будет с люком за спиной, позволяющим пристыковывать скафандр к станции или жилому модулю на поверхности планеты. Чтобы привести такой скафандр в рабочее состояние (включая герметизацию), требуются считаные минуты.

Прототип скафандра Z-1 уже проходит испытания. За определённое внешнее сходство с костюмом известного мультипликационного персонажа его прозвали «скафандром Базза Лайтера».

Специалисты пока не определились, в каком костюме человек впервые ступит на поверхность Красной планеты. Хотя Марс обладает атмосферой, она настолько разрежена, что легко пропускает солнечную радиацию, поэтому человек внутри скафандра должен быть хорошо защищён. Специалисты NASA рассматривают широкую палитру возможных вариантов: от тяжёлого жёсткого скафандра Mark III до лёгкого обтягивающего костюма Bio-Suit.

Перспективный скафандр Bio-Suit (прототип). Покоряйте Марс, оставаясь стильным!

∗∗∗

Технологии изготовления скафандров будут развиваться. Костюмы для космоса станут умнее, элегантнее, изощрённее. Возможно, когда-нибудь появится универсальная оболочка, способная защитить человека в любой среде. Но и сегодня скафандры - уникальный продукт технологий, которые без преувеличения можно назвать фантастическими.



Образцы первых высотных скафандров (слева направо): скафандр Ч-З (СССР, середина 30-х годов); скафандр Вилли Поста (США, середина 30-х годов); скафандр СК-ЦАГИ-8 (СССР, 1940 г.); скафандр ВСС-04 (СССР, 1950 г.).


Первые космические скафандры. Какими они были. О, какая романтическая тема, особенно для тех кто был рожден в те времена когда человек серьезно нацелился в космос, покорять дивные дальние планеты… но это было давно, увы, сейчас человечество взяло другой курс, курс в никуда. (Но это другая тема.



Каждый из нас видел по телевидению, в кино или на фотографиях, как на стартовой позиции космонавты идут к ракете в своем космическом одеянии - в скафандрах. Но не каждый, наверное, сможет точно ответить на простой вопрос: зачем космонавту скафандр? Для чего конкретно нужно это снаряжение, стесняющее движение человека? И, в частности, для чего оно в космическом корабле, где созданы все необходимые для жизни и работы условия.



Скафандр для выхода в открытый космос из орбитальной станции «Салют-6».


Человеческий организм приспособлен к жизни в условиях земной атмосферы и не может существовать за ее пределами без специальных средств защиты, без созданной для него искусственной среды обитания. В полете основное средство защиты космонавта от воздействия неблагоприятных факторов космического пространства - это сам космический корабль, его герметическая кабина. Однако по требованиям безопасности полета иногда необходимо еще и индивидуальное защитное снаряжение. Например, в такие периоды полета, когда нужно считаться с возможностью разгерметизации кабины или с отказом бортовой системы жизнеобеспечения. Ну, а при выходе из корабля в открытый космос скафандр становится единственной защитой человека.



Космические скафандры (слева направо): спасательный скафандр, применявшийся во время полета Ю. А. Гагарина на корабле «Восток» (1961 г.); скафандр (показан без теплозащитной оболочки), применявшийся А. А. Леоновым для работы в открытом космосе во время полета на корабле «Восход-2» (1965 г.); скафандр, применявшийся А. С. Елисеевым и Е. В. Хруновым при переходе через открытый космос из корабля «Союз-5» в корабль «Союз-4» (1969 г.); скафандр, применявшийся для выхода на Луну в программе «Аполлон» (1969 г.).


А теперь от этих общих соображений перейдем к конкретным факторам, определяющим необходимость такого защитного снаряжения, как скафандр.



Во время полета на борту орбитальной станции «Салют-6» Ю. В. Романенко готовит свой скафандр к выходу в открытый космос. (Снимок сделан Г. М. Гречко).


Человек в безвоздушном пространстве


Известно, что с удалением от поверхности Земли барометрическое давление снижается. Если нормальное давление на уровне моря равно 760 мм ртутного столба, то уже на высоте 12 км оно снижается в 5 раз, а на высоте 50 км - в 1000 раз. На высоте полета орбитальных космических кораблей давление равно примерно 10-6-10-8 мм рт. ст., то есть оно в миллиарды раз меньше, чем на Земле.



Спасательный скафандр для полетов на космических кораблях «Союз».


Кислород, жизненно необходимый человеку, поглощается им из вдыхаемого воздуха и одновременно в процессе дыхания из организма удаляется углекислота. Для этого даже в состоянии покоя человек прокачивает через свои легкие до 450 литров воздуха в час. Содержание кислорода в атмосфере составляет 21% по объему и остается практически постоянным на разных высотах. Поэтому на долю кислорода всегда приходится примерно пятая часть атмосферного давления, у поверхности Земли это составляет 160 мм рт. ст. И все наши сложные физиологические системы миллионами лет эволюции приспособились к поглощению кислорода именно при таком давлении.


С подъемом на высоту падает общее барометрическое давление, а вместе с ним уменьшается парциальное давление кислорода (часть общего давления смеси газов, обусловленная данным газом или паром). Наступает «кислородное голодание»: чтобы получить необходимое количество кислорода, человек начинает дышать более часто и глубоко, а если и в этом случае кислорода оказывается слишком мало, теряет сознание. В нашем организме практически нет запасов кислорода, поэтому если без пищи человек может прожить месяцы, без воды - до 14 суток, то без кислорода - максимум несколько минут.


Кроме кислородного голодания, есть и другие факторы, затрудняющие или делающие невозможным пребывание человека в условиях пониженного давления. Так, в частности, с понижением атмосферного, то есть внешнего, давления до уровня, соответствующего высоте 7-8 км, растворенный в тканях организма азот переходит в газообразное состояние. Появившиеся пузырьки газа могут нарушить кровоснабжение жизненно важных органов или вызвать боли, оказывая механическое давление на нервные окончания (декомпрессионные расстройства). На еще больших высотах может произойти закипание жидких сред организма. Вода, содержащаяся в тканях, уже при давлении около 47 мм рт. ст. (это соответствует атмосферному давлению на высоте 19,2 км) закипает при 37°С, то есть при нормальной температуре тела.


Чтобы предотвратить кислородное голодание к вдыхаемому воздуху добавляют кислород, увеличивают его процентное содержание с таким расчетом, чтобы парциальное давление кислорода составляло привычную для человека величину - 160мм рт. ст. Для этого, в частности в авиации, используют кислородно-дыхательную аппаратуру в комплекте с маской или гермошлемом. Однако уже на высоте 12 км, где общее давление составляет всего 145 мм рт. ст., даже чистый кислород не может создать необходимого парциального давления. А на высоте 16 км при дыхании чистым кислородом человек теряет сознание уже через 15 секунд.


Из всего оказанного нужно сделать такой вывод: для полетов на больших высотах необходимо увеличить общее давление газа, в котором находится и которым дышит человек, то есть нужно создать вокруг человека среду с избыточным давлением, превышающим атмосферное давление на данной высоте. Это одна из главных задач, которая решается с помощью скафандра. Герметичная оболочка скафандра изолирует человека от внешней среды, а внутри скафандра создается искусственная атмосфера с избыточным давлением и необходимым газовым составом.


Избыточное давление в атмосфере скафандра должно быть достаточным для получения нужного парциального давление кислорода и предотвращения декомпрессионных расстройств. В то же время это давление стремятся сделать минимальным, чтобы улучшить подвижность скафандра. Практически в современных космических скафандрах рабочее давление лежит в пределах от 180 до 300 мм рт. ст. Искусственная среда скафандра не обязательно должна обладать всеми свойствами привычной земной атмосферы: если человек находится в скафандре сравнительно недолго, то можно рассчитывать на известные резервы человеческого организма, позволяющие ему без ущерба переносить условия, несколько отличающиеся от нормы.




Проблемы, проблемы…


Работы по созданию скафандров для высотных полетов начались более 40 лет назад, и наша страна включилась в них одной из первых. С тех пор высотные скафандры прошли большой путь - от малоподвижного армированного надувного комбинезона до сложного технического устройства с совершенными системами жизнеобеспечения. Устройства, в котором используются достижения самой современной технологии, материаловедения, химии, электроники и других областей техники.


Разработка современных космических скафандров, особенно предназначенных для работы в открытом космосе, требует решения ряда сложных научно-технических проблем. Нужно, в частности, создать в скафандре необходимый для человека микроклимат (давление, газовый состав, влажность, температура), причем с учетом возможных аварийных ситуаций. Нужно защитить космонавта и оборудование скафандра от воздействия глубокого вакуума и излучений Солнца. Необходимо обеспечить отвод тепла, выделяемого человеком, а это не так-то просто сделать в условиях космоса. Нужно, наконец, обеспечить подвижность космонавтов, их работоспособность, что, конечно, затруднено из-за избыточного давления в скафандрах. Скафандр должен быть герметичным, прочным, легким, иметь небольшой объем, обеспечивать безопасность работы космонавта. К этому следует добавить еще массу, так сказать, вспомогательных «нужно», таких, например, как разработка методов моделирования внешних воздействий космического пространства и условий выхода из корабля при наземных испытаниях или создание материалов, пригодных для условий открытого космоса.


Важные характеристики скафандра - быстрота его надевания и простота эксплуатации. А при длительных полетах на орбитальных станциях, когда программой могут предусматриваться смены экипажей и несколько выходов для работы в открытый космос, к скафандрам начинают предъявлять дополнительные требования. Хочется, например, чтобы скафандр можно было «отрегулировать» для космонавтов разного роста. Чтобы в случае необходимости скафандр можно было отремонтировать или заменить отдельные его элементы.


Как укрыться от солнца


Работу человека в скафандре вне корабля при расчетах обычно оценивают как работу средней тяжести, на которую человек затрачивает мощность в среднем 300 Вт. Этим энергозатратам соответствуют такие показатели жизнедеятельности организма: потребление кислорода - примерно 60 л/час; выделение углекислоты - 48 л/час; выделение влаги - 50-300 г/час (в зависимости от температуры окружающей среды и способа охлаждения тела).


Необходимые климатические и гигиенические условия в скафандре поддерживает автономная система обеспечения жизнедеятельности - сокращенно АСОЖ, - неотъемлемая часть космического скафандра. Именно АСОЖ должна обеспечить заданное давление в скафандре, газовый состав, удаление продуктов жизнедеятельности, поддержание необходимой влажности и температуры.


Особо сложной оказывается задача сохранения теплового баланса. В связи с малым коэффициентом полезного действия человека - он обычно не превышает 20%-вся развиваемая мощность, все эти средние 300 Вт практически превращаются в тепло. Сколько-нибудь значительного теплового обмена между космонавтом, одетым в скафандр, .и космическим пространством не происходит: в космосе ведь нет воздуха, нет теплопроводной среды, которая в земных условиях отводит тепло от нашего тела. Конвекции внутри скафандра в условиях невесомости также нет. Остается лишь один путь теплопередачи - тепловое излучение. При этом необходимо учитывать, что космонавт вне корабля может работать либо в зоне солнечного освещения (на 1м2 поверхности скафандра в открытом космосе падает до 1200 ккал/час солнечного тепла), либо в тени, в условиях сильнейшего космического холода. Поэтому тепловые потоки к скафандру или от него могут резко колебаться и достигать больших величии.Чтобы защищать человека и оборудование от столь резких изменений тепловых потоков, поверх основной оболочки скафандра надевается одежда с несколькими слоями так называемой экранно-вакуумной теплоизоляции, которая работает как своего рода многослойный термос. Кроме того, определенным образом подбираются оптические характеристики («степень черноты» - коэффициент, характеризующий излучательную способность тела; коэффициент поглощения солнечных лучей) материалов для открытых поверхностей скафандра, а также создаются для них специальные краски. Материалы и покрытия подбираются таким образом, чтобы внешние излучения почти полностью отражались и при этом собственное, внутреннее тепловое излучение задерживалось. Важность этой проблемы связана еще и с тем, что для мягких частей скафандра нужны эластичные материалы, а они не всегда выдерживают большие перепады температуры.


В открытом космосе, за пределами атмосферы, состав солнечного излучения существенно отличается от того, к которому мы привыкли на поверхности Земли. Поэтому особые требования предъявляются к прозрачной части шлема: остекление и светофильтры должны защитить глаза и кожу лица от чрезвычайно активных ультрафиолетовых лучей, от инфракрасных (тепловых) лучей, должны ослабить солнечное излучение в видимой части спектра, обеспечив при этом хорошую видимость при различной освещенности.


Микроклимат в скафандре


Наиболее простой способ поддерживать в скафандрах необходимые параметры газовой среды - это непрерывная вентиляция, непрерывная подача в него газовой смеси заданного состава с последующим выбрасыванием ее в окружающую среду. В этой системе сама газовая смесь будет уносить выделенные космонавтом тепло, влагу, углекислоту, вредные примеси. Такая система, как ее называют «открытого типа» обычно применяется на высотных самолетах: здесь можно для вентиляции использовать воздух, взятый из окружающей атмосферы, и только добавлять в него кислород, необходимый для дыхания. Сама система при этом получается очень простой и надежной. Однако для космического скафандра открытые системы слишком расточительны. В космосе, конечно, никакого воздуха нет, и поэтому запасы газов для вентиляции нужно брать с собой в баллонах. А это дополнительные объемы и вес, причем, мягко говоря, немалые.


Тем не менее открытые системы обеспечения жизнедеятельности применялись при первом выходе в космос А. Леонова и при работах вне корабля по программе «Джемини» в США - в этих случаях время работы в скафандре за бортом корабля было невелико и суммарный расход газов получался вполне приемлемым.


В современных космических скафандрах главным образом используют системы регенерационного типа, где циркуляция газа происходит по замкнутому контуру и обновляется не вся газовая среда внутри скафандра, а только те ее компоненты, которые изменяются или расходуются в процессе жизнедеятельности человека. После восстановления в АСОЖ газовая смесь пополняется кислородом и снова используется для дыхания и вентиляции.


Как уже говорилось, при создании микроклимата в скафандре особые заботы разработчикам доставляет тепловой режим. Достаточно сказать, что даже при сравнительно небольшой «теплообменной недостаточности», всего на каких-то 150 ккал/час, у человека с массой 70 кг, находящегося в скафандре, температура тела за 1 час повысится более чем на 2°С. А это сопряжено с потерей работоспособности.


Перенос тепла от тела человека к охлаждающему агрегату АСОЖ может осуществляться с использованием как газа (воздуха), так и жидкости. При воздушном охлаждении тепло отбирается у тела главным образом за счет интенсивного потоотделения, а это, конечно, серьезный недостаток. Кроме того, для отвода тепла при интенсивной работе космонавта необходимо прогонять через скафандр весьма большой объем газа, примерно 700-1000 л/мин. Это, в свою очередь, требует вентилятора мощностью в несколько сот ватт, требует больших затрат электроэнергии, а сильный обдув не очень-то приятен для космонавта.


Водяное охлаждение, пожалуй, является единственно возможным методом поддержания приемлемых тепловых условий в скафандре при интенсивной работе космонавта. Чтобы отвести 300-500 ккал/ч тепла, расход воды через костюм водяного охлаждения обычно составляет 1,5-2 л/мин, потребная длина охлаждающих трубок- до 100 метров. Для прокачки воды вполне хватает насоса с мощностью двигателя в несколько ватт. Одновременно с водяным охлаждением нужна и вентиляция - она уносит выделяемую влагу и углекислоту, но, конечно, мощность вентилятора уже во много раз меньше, чем при чисто воздушном охлаждении.


Легко ли двигаться в скафандре


Разная одежда по-разному сковывает движения человека. Сравните, как легко поднимается рука, если вы в одной легкой рубашке, и насколько трудно поднять ее в зимнем пальто. По-особому сопротивляется движению тела скафандр. Его мягкая оболочка под действием внутреннего избыточного давления всегда стремится, принять форму тела вращения и распрямиться. Согнуть какую-либо ее часть, скажем, рукав или штанину, не так-то просто, и чем больше внутреннее давление, тем труднее это сделать. Чтобы обеспечить подвижность тела, в скафандре применяют шарниры, их размещают в области основных суставов - плечевых, локтевых, коленных, в области лодыжек, пальцев рук и т. д. Конструкция шарниров может быть различной: она зависит от характера движений, в которых участвует шарнир. Кроме того, для повышения подвижности в ряде сочленений используются герметические подшипники (например, в плечевом или кистевом сочленениях), совершенствуется раскрой оболочки скафандра, разрабатываются более легкие и гибкие материалы.


При работе в первых космических скафандрах из-за их относительно низкой подвижности космонавтам приходилось затрачивать немалые дополнительные усилия, что в итоге вело к интенсификации обменных процессов в организме. Из-за этого, в свою очередь, приходилось увеличивать массу и габариты запасов кислорода, а для замкнутых систем еще и поглотителей углекислоты и блоков системы охлаждения.


Несмотря на достигнутые с того времени успехи, проблема подвижности человека в скафандре до сих пор остается одной из основных.


Немного истории


Все космические скафандры принято делить на три класса:


спасательные скафандры - служат для защиты космонавтов в случае разгерметизации кабины или при значительных отклонениях параметров ее газовой среды от нормы;

скафандры для работы в открытом космосе на поверхности космического корабля или вблизи его;

скафандры для работы на поверхности небесных тел.


Существуют и универсальные скафандры, они могут использоваться и как спасательные и при выходе в открытый космос.


Первые космические скафандры, использовавшиеся при полетах на кораблях «Восток», представляли собой чисто спасательное снаряжение, причем многоцелевое. Они могли обеспечить защиту космонавтов в случае разгерметизации кабины, при катапультировании на заключительном этапе спуска и при возможном последующем приводнении. Кстати, такой универсальностью, стремлением (космический костюм приспособить ко всем возможным условиям полета объясняется значительная сложность и громоздкость первых космических скафандров. Вспоминается, что, отправляя в полет Ю. А. Гагарина, его сначала облачали в толстую теплозащитную одежду с системой вентиляции и затем только надевали сам скафандр. Поверх скафандра надевались различные приспособления на случай попадания космонавтов в воду, в карман вкладывалась аварийная радиостанция.


При полетах, продолжительность которых не превышала нескольких суток, космонавты находились в скафандрах все время полета. Это накладывало немало серьезных дополнительных требований: нужно было предусмотреть работу в скафандре со всей аппаратурой корабля, принятие пищи и воды, пользование системой удаления отходов жизнедеятельности. В дальнейшем, в частности при полетах на кораблях «Союз», космонавты начали надевать спасательные скафандры только в особо ответственных случаях: при выведении на орбиту, стыковке кораблей, спуске с орбиты на Землю, а также, конечно, при выходе в космос.


Первый в истории выход в открытое космическое пространство совершил, как известно, в 1965 году А. А. Леонов во время полета на корабле «Восход-2». Этим было практически доказано, что человек может работать в открытом космосе. В последующие годы было осуществлено еще несколько более продолжительных выходов в открытый космос советскими космонавтами из корабля «Союз-5» и американскими астронавтами из кораблей «Джемини», «Аполлон» и орбитальной станции «Скайлэб».


Следует отметить, что основные режимы работы спасательного скафандра значительно отличаются от режимов работы скафандра, предназначенного для работы в открытом космическом пространстве. Спасательный скафандр должен быть максимально удобен для работы внутри герметичной кабины, то есть в ненадутом состоянии - лишь в аварийной ситуации автоматически происходит надув спасательного скафандра. А скафандр для выхода в космос должен быть рассчитан на непрерывную работу космонавта при внутреннем избыточном давлении. Спасательный скафандр, как правило, работает в сочетании с бортовой системой жизнеобеспечения, в то время как скафандр «для выхода» должен иметь автономную систему жизнеобеспечения, иметь АСОЖ, органически объединенную с ним.


Скафандры для комплекса «Союз» - «Салют»


Для космического комплекса, образуемого кораблями типа «Союз» и орбитальной станцией «Салют-6», было признано целесообразным иметь два различных типа скафандров. В качестве спасательного применяется максимально облегченный «мягкий» скафандр, изготовленный индивидуально для каждого космонавта. Это, по сути дела, многослойный герметический комбинезон, объединенный с мягким шлемом. Верхняя часть шлема со смотровым стеклом - откидывающаяся.


Масса скафандра не превышает 8-10 кг, толщина пакета оболочек минимальна, что дает возможность использовать его с индивидуальными ложементами амортизационных кресел, ослабляющими действие перегрузок при выводе на орбиту и спуске. Основной конструкционный элемент скафандра - внешняя силовая оболочка, рассчитанная на нагрузки, которые создает внутреннее избыточное давление. Силовая оболочка изготовлена из высокопрочного синтетического материала и снабжена рядом шарниров. Надевают этот скафандр через передний мягкий распах.


Вентиляция в спасательном скафандре осуществляется воздухом кабины, регенерируемым в бортовой системе жизнеобеспечения. При разгерметизации кабины наполнение скафандра до необходимого давления, подача кислорода, удаление углекислого газа, влаги, тепла производятся с помощью автономной бортовой системы. Для выхода в космос из станции «Салют-6» используются скафандры принципиально новой конструкции - так называемого полужесткого типа. Их основная отличительная черта - жесткий металлический корпус - кираса. Она составляет единое целое со шлемом и ранцевой системой жизнеобеспечения; рукава и оболочки штанин скафандра мягкие. Этот скафандр не надевают, в него входят сзади, через люк в кирасе. В наспинной части скафандра размещена АСОЖ, которая одновременно служит герметической крышкой входного люка.Полужесткий скафандр в мировой практике космических полетов применен впервые. В его активе такие бесспорные достоинства:


Легкость и быстрота надевания (или, точнее, «входа» в скафандр): надеть и снять подготовленный к работе скафандр можно буквально за 2-3 минуты, причем без посторонней помощи;


Удобство эксплуатации и высокая надежность: в скафандре нет внешних пневмогидрокоммуникаций, связывающих его с ранцем, где располагается АСОЖ; органы управления удобно размещены на жестком корпусе скафандра (ранее применявшиеся скафандры мягкого типа, например, скафандр кораблей «Аполлон», имели отдельный ранец с размещенной в нем АСОЖ; этот ранец надевался поверх скафандра и, естественно, был связан с ним рядом гибких трубопроводов и кабелей, которые при выходе из корабля тоже попадают в тяжелые условия открытого космоса;


Высокая герметичность: герметизация места входа в скафандр осуществляется с помощью надежного механического соединения;


Полужестким скафандром одного размера в принципе могут пользоваться космонавты разной комплекции: благодаря жесткому корпусу увеличенные зазоры между телом и оболочкой не играют большой роли, а длина эластичных оболочек (рукава, штанины) регулируется каждым космонавтом в соответствии с его ростом; полужесткие скафандры для работы в космосе постоянно находятся на борту «Салюта-6», ими может пользоваться каждый, кто прибывает на станцию.


Следует также отметить, что габариты полужесткого скафандра в рабочем режиме меньше габаритов соответствующего мягкого скафандра в надутом состоянии с надетым ранцем.


Чтобы обеспечить хорошую подвижность при избыточном давлении, скафандр снабжен герметическими подшипниками и мягкими шарнирами. Перчатки съемные, подбираются индивидуально для каждого космонавта.


Автономная система обеспечения жизнедеятельности скафандра - замкнутого регенерационного типа. Она состоит из ряда функционально связанных друг с другом систем. В их числе:


система кислородного питания с устройствами для хранения запаса кислорода и аппаратурой для регулирования и поддержания давления в скафандре;

система вентиляции и регулирования газового состава, с блоками очистки газовой среды скафандра от углекислоты и вредных примесей;

система терморегулирования;

система электрооборудования, управления и контроля работы агрегатов;

система радиосвязи.


В системе терморегулирования используется костюм водяного охлаждения - сетчатый комбинезон и шапочка с вплетенными тонкими пластмассовыми трубочками, по которым циркулирует вода, охлаждаемая в теплообменнике. Такой метод теплоотвода в отличие от применявшегося в скафандрах кораблей «Восход-2» и «Союз-5» снятия тепла с помощью вентилирующего газа обеспечивает нормальные тепловые условия внутри скафандра практически при любом уровне физической активности космонавта и в течение полной «рабочей смены». Интенсивность теплосъема регулируется самим космонавтом.


Скафандр может многократно использоваться для выхода в открытое космическое пространство. После каждого выхода можно дозаправить водой бачок контура системы охлаждения АСОЖ, заменить израсходованный блок поглощения углекислоты, дозаправить или заменить блоки с запасами кислорода. Основные системы жизнеобеспечения скафандра дублируются резервными блоками.


Работоспособность агрегатов и оборудования скафандра в условиях глубокого вакуума космического пространства обеспечивается подбором соответствующих материалов и пар трения в подвижных соединениях, применением специальных смазок, а также установкой многих агрегатов внутри корпуса скафандра.


Электропитание агрегатов скафандра, радиосвязь и передача телеметрической информации от космонавта на Землю осуществляются с помощью так называемого электрофала - специального многопроводного кабеля, связывающего системы скафандра с бортом станции «Салют-6». В атмосфере внутри скафандра при работе в космосе давление меньше, чем на Земле, а содержание в скафандре кислорода выше. Поэтому создание скафандра и АСОЖ, в частности выбор материалов, разработка конструкции элементов, приборов и агрегатов, включая электрорадиоаппаратуру, проводились с учетом повышенных требований пожаробезопасности.


Создание скафандра для выхода космонавтов в открытый космос из орбитальной станции «Салют-6» потребовало проведения большого объема исследований и экспериментальной отработки агрегатов и комплекса в целом.


В отличие от других видов космической техники, которая на заключительном этапе проверяется при беспилотных космических полетах, отработка скафандра проводится с обязательным участием испытателей в наземных условиях, максимально приближенных к натурным. В связи с этим большое внимание уделялось моделированию условий работы скафандров, АСОЖ, материалов, созданию методов отработки этого комплекса на летающих лабораториях, в специальных бассейнах (для имитации условий невесомости), в термобарокамерах, на тренажерах.


Разработка нового типа скафандра и его успешное применение на орбитальной станции «Салют-6» - это крупный шаг вперед в скафандростроении.


Испытатель входит в полужесткий скафандр, предназначенный для работы в открытом космосе; шторка, закрывающая агрегаты автономной системы обеспечения жизнедеятельности (АСОЖ), откинута.



Внешний вид полужесткого скафандра (без теплоизолирующей оболочки): 1 - мягкие асти скафандра; 2 - разъем пневмо- и гидрокоммуникаций; 3 - ручка для закрывания входного люка скафандра; 4 - карабин страховочного фала; 5 - клапан включения резервного запаса кислорода; 6 - светофильтр; 7 - жесткий корпус; 8 - гермоподшипник; 9 - пульт управления и контроля; 10 - регулятор режимов давления в скафандре; 11 - индикатор давления в скафандре; 12 - перчатка; 13 - силовой шпангоут; 14 - штепсельный разъем.



Внешний вид костюма водяного охлаждения (А) и схема распределения воды в нем (Б). 1, 2 - подводящий и отводящий шланги; 3 - сетчатый комбинезон; 4 - охлаждающие трубки.



Схемы работы типовых АСОЖ (водяное охлаждение не показано) открытого типа с выбросом в вакуум (А), с частичной регенерацией (Б) и полной регенерацией (В). 1 - блок подачи кислорода; 2 - блоки регенерации.


Типовая блок-схема АСОЖ для скафандра регенерационного типа (АСОЖ размещена в герметичном корпусе, выполненном заодно со скафандром): 1 - пульт управления и контроля; 2 - внутренняя полость скафандра и АСОЖ; 3 - влагоотделитель; 4 - теплообменник; 5 - блок поглощения углекислоты и других продуктов жизнедеятельности; 6 - вентилятор; 7 - костюм водяного охлаждения; 8 - насос; 9 - кран для регулирования температуры воды; 10 - вода замкнутого контура охлаждения; 11 - регулятор подачи воды; 12 - вода открытого контура охлаждения (отбирает тепло у воды замкнутого контура); 13 - блоки автоматики и контроля; 14 - клапан включения аварийной подачи кислорода;15 - баллон с резервным запасом кислорода; 16 - регулятор подачи кислорода; 17 - регулятор режимов давления в скафандре; 18 - основной запас кислорода; 19 - предохранительный клапан; 20 - разъем пневмо- и гидрокоммуникации; 21 - медицинские датчики; 22 - переговорное устройство.



Типовая блок-схема АСОЖ для скафандра


Некоторые элементы конструкции скафандров - варианты структуры мягкой оболочки (А), шарниров мягких частей скафандра (В, В) и гермоподшипника (Г). 1 - наружная защитная ткань; 2 - пакет слоев энранно-вакуумной изоляции; 3 - силовая оболочка скафандра; 4 - основная герметичная оболочка; 5 - дублирующая герметичная оболочка; 6 - подкладка; 7 - трубки системы вентиляции; 8 - вентиляционный зазор; 9 - костюм водяного охлаждения; 10 - нательное белье; 11 - силовая стяжка (лента, шнур, трос); 12 - поперечная складка; 13 - поперечный шнур; 14 - внешняя обойма подшипника; 15- внутренняя обойма; 16 - герметизирующий клапан; 17 - шарики.



«Наука и жизнь» №6-1978. Профессор Г. Ильин, кандидаты технических наук В. Иванов, И. Павлов.

0



Космические скафандры, используемые в настоящее время при космических полетах в Соединенных Штатах и в России,- весьма сложное снаряжение, которое разрабатывалось в течение последних 40 лет усилиями многих стран. Хотя эти скафандры явились плодом многих лет исследований и непрерывных усовершенствований, принцип, лежащий, в их основе, весьма прост. Он заключается в создании вокруг человеческого тела подвижной надувной капсулы. Эта капсула изолирует человека от окружающей среды, создает и поддерживает вокруг его тела постоянное атмосферное давление и обеспечивает условия для нормального дыхания и теплообмена, для приема пищи и жидкости, для отправления естественных надобностей, при этом она позволяет перемещаться и выполнять полезную работу. Основное назначение космического скафандра аналогично назначению любой герметичной кабины, и его можно осуществить различными способами в зависимости от поставленных задач и условий космического полета, а также от общей конструкции всех других систем жизнеобеспечения и узлов летательного аппарата. Скафандры, которые на сегодняшний день используются в космонавтике, рассчитаны на то, чтобы позволить человеку безопасно работать в условиях вакуума открытого космоса, на поверхности Луны независимо от основного космического летательного аппарата и выжить в случае внезапной разгерметизации кабины космического корабля, при этом все время должен поддерживаться известный уровень комфорта и должна сохраняться возможность выполнения полезной работы. В настоящей главе описаны системы космического скафандра, подробно рассмотрены физиологические и эксплуатационные требования, которым должны удовлетворять указанные системы, и описаны технические усовершенствования, использованные в наиболее перспективных скафандрах.

Армированные скафандры для защиты человека от повышенного давления впервые были предложены в 1838 г., когда Тейлор изобрел сочлененный армированный скафандр для подводных операций. Жюль Верн, по-видимому, первый предложил использовать надувной скафандр для защиты от пониженного давления на больших высотах. В 1872 г. он описал работу скафандра для пребывания вне корабля при полете вокруг Луны. Примерно в 1875 г. русский химик Дмитрий Иванович Менделеев предложил герметическую гондолу для защиты людей в стратосферных полетах на воздушном шаре. Хотя патенты на надувные летне костюмы были выданы во Франции в 1910 г., а в США в 1918 г., первыми, кто сконструировал защитный скафандр с поглощением двуокиси углерода и испытал его в камере с низким давлением, были англичане Д. Холден и Г. Дэвис. В 1933 г. в ответ на просьбу американского воздухоплавателя Марка Риджа физиолог Холден и специалист по водолазным скафандрам Дэвис сконструировали и изготовили скафандр, предназначенный для подъема в стратосферу.

Рис. 1. Характеристики системы скафандра при взрывной декомпрессии (от высоты 5490 м до высоты 22 875 м за 110 мсек)

1 - абсолютное давление в скафандре;

2- уровень равновесного давления в скафандре 195 мм рт. ст. (соответствует высоте 10 065 м), достигнутый за 3000 мсек.;

3- уровень давления в барокамере 27,9 мм рт. ст. (со

ответствует высоте 22 570 м), достигнутый за 110 мсек.;

4- абсолютное давление в барокамере

Рис. 2. Схема системы регулирования давления в скафандре

1- анероид,

2- емкость с анероидом,

3- запас кислорода 375 см 3 под давлением 122 кг/см 2 ,

4- от кислородной системы корабля, давление 122 кг/

/см 2 ,

5- редуктор, понижающий давление с 122 кг/см 2 до

3,4 кг/см 2 ,

6- редуктор, понижающий давление с 122 кг/см 2 до

4,76 кг/см 2 ,

7- емкость, соединенная со скафандром,

8- отсек регулирования давления в скафандре,

9- выходное отверстие регулятора,

10- пружина,

11- вход вентиляционного воздуха,

12- выход вентиляционного воздуха,

13- скафандр,

14- диафрагмы,

15- отсек регулирования расходного клапана,

16- расходная емкость,

17- расходный (поворотный) клапан,

18- отверстие для сброса давления,

19- отверстия

Ридж надевал скафандр и многократно испытывал его в камерах с низким давлением. В последнем испытании он в течение 30 мин. находился в камере с давлением 17 мм рт. ст., что соответствует высоте 25,6 км, и не ощущал никаких болезненных явлений. Это были первые в мире испытания, в которых человек в надувном скафандре успешно выдержал низкое барометрическое давление, имитирующее очень большую высоту. К сожалению, планируемый полет на воздушном шаре с использованием скафандра так и не состоялся.

Ввиду интереса к скоростным полетам в начале 30-х годов были предприняты дальнейшие усилия по разработке скафандра.

В разработку прототипа высотных скафандров включились США и СССР в 1934 г., Германия и Испания в 1935 г. и Италия в 1936 г.

В августе 1934 г. американец В. Пост на своем самолете «Вини мэй» совершил близ Акрона, штат Огайо, первый полет в высотном скафандре.

Скафандр, который надевал Пост, был предварительно испытан в барокамере до давления, соответствующего высоте 7015 м, в течение 35 мин. В скафандре было предусмотрено большое отверстие в вороте, через которое и надевали скафандр (вместо разрезной талии). Он был двухслойным: внутренняя резиновая оболочка рассчитана на поддержание давления заполняющего скафандр газа, а внешняя тканевая оболочка - на сохранение желаемой формы скафандра. В этом скафандре Пост совершил не менее 10 полетов, пока не погиб в августе 1935 г. в авиационной катастрофе, не связанной с программой испытания высотных костюмов. Усилия Поста ясно показали возможность использования скафандров в высотных самолетах и возможность использования жидкого кислорода для дыхания и для наддува скафандра.

В 1936 г. в Институте авиационной медицины СССР В. А. Спасский приступил к исследованиям по определению медицинских критериев, которыми могли бы воспользоваться конструкторы при создании стратосферного оборудования. Одновременно под руководством инженеров Е. Е. Чертовского и А. И. Бойко были разработаны несколько моделей скафандров, прошедших лабораторные и летные испытания.

В США до Второй мировой войны проводилась небольшая исследовательская работа по скафандрам. К этому времени ВВС и ВМС США начали программы разработок Плексигласового шарообразного шлема и съемных секций для рук и ног, которые присбединяются к основному корпусу скафандра.

В 50-х годах военная авиация стала уделять повышенное внимание высотным характеристикам самолетов. Имитация полётов в барокамерах придала летчикам, одетым в скафандры, уверенность в возможности преодоления существовавших мировых рекордов высоты.

Рис. 3. Воздухоплаватели М. Росс и В. Празер, защищенные только высотными скафандрами, в открытой гондоле, перед стартом стратостата

72 часа имитированного полета до высоты 42 395 м в легком скафандре фирмы Гид-рич ВМС США в 1958 г. открыли путь к рекордному по высоте полету Флинта в 1959 г. на реактивном самолете Ф-4 (Фантом) (30 060 м).

Тем временем ВВС США весьма успешно работали над созданием высотно-компенсирующих костюмов с использованием принципа кабестана. Это была одежда из пористой ткани, не нуждающаяся в охлаждающем устройстве, которое требовалось для скафандра. В тот период такие костюмы широко использовались в военной авиации.

Скафандр ВМС с небольшими модификациями стал первым космическим скафандром США и был использован в полете «Меркурия». Этот скафандр разработан главным образом при содействии Лаборатории летного снаряжения ВМС (Филадельфия, штат Пенсильвания) и нескольких гражданских подрядчиков.

В 1949 г. сотрудники этой лаборатории внесли важный вклад в науку о скафандрах, разработав комбинированный компенсированный регулятор дыхания. Этот регулятор позволял использовать респираторную систему, полностью отделенную от газа, надувающего скафандр, и упрощенную дыхательную маску, не требующую клапанов. Скафандр был снабжен застежками-молниями, которые позволяли создать в нем ряд распахов для облегчения надевания и снимания. Проблема утечек была в значительной мере решена использованием метода вулканизации. Подвижность структуры обеспечивалась устройством герметических вращающихся подшипников и рифленых соединений. Разработка фирмой «Файвел компани» автоматического устройства для наддува скафандра впервые обеспечила проведение эффективных экспериментов

Рис. 4. Первый выход в космос в космическом скафандре, выполненный Алексеем Леоновым в марте 1965 г.

Рис. 5. Космонавт Эдвард Уайт в открытом космосе в космическом скафандре типа G-IV-C, июнь 1965 г.

с человеком в высотном скафандре в барокамерах при очень низких давлениях. Автоматический наддув позволял оценить степень защиты, которую обеспечивает скафандр в условиях очень больших высот и в условиях взрывной декомпрессии.

На рис. 1 показаны результаты исследования влияния взрывной декомпрессии на человека, проведенные в Лаборатории летного снаряжения ВМС. В этих исследованиях испытуемые, одетые в скафандр, подвергались декомпрессии от давления, соответствующего высоте 5490 м, до давления, соответствующего высоте 22 875 м, в течение короткого времени 110 мсек. Следует заметить, что давление в скафандре постепенно снижалось, чтобы обеспечить безопасные для жизни условия. На рис. 2 показана схема системы регулирования давления для одной из первых успешных моделей скафандра ВМС.

Высотный скафандр ВМС подвергался серьезным испытаниям в мае 1961 г., когда в двухместной открытой гондоле стратостата «Стратолаб» Малкелом Росс и Виктор Празер поднялись на рекордную высоту 34169 м (рис. 3). Этот стратостат, поднявшийся с военного корабля-авианосца «Антиетум», был самым большим из когда-либо применявшихся для полетов с людьми.

Стратостат достиг максимальной высоты через 2 часа 36 мин. после взлета. Во время высотной части 9-часового полета терморегулирование гондолы до некоторой степени обеспечивалось за счет особого расположения боковых жалюзи, которые можно было открывать вручную, чтобы пропускать желательное количество прямых солнечных лучей. Высотные скафандры начали работать на высоте 7930 м и обеспечили воздухоплавателям необходимую защиту в течение всего полета, включая 2 часа пребывания на максимальной высоте. Полет показал надежность длительного использования высотных скафандров для индивидуальной защиты организма на больших высотах.

Как указывалось выше, высотные скафандры, которые использовались в космической программе США, были созданы на базе военного высотного скафандра.

В 1959 г. скафандр МК IV ВМС был использован в проекте «Меркурий». Скафандры для программы «Джемини» были созданы на базе скафандра ВВС, разработанного для опытного самолета Х-15. Скафандры «Аполлон» были специально разработаны для целей Национального управления по аэронавтике и исследованию космического пространства.

К 1965 г. техника высотного скафандра достигла состояния, позволяющего людям выходить в открытый космос. В этом году советский космонавт Алексей Леонов первым отважился на выход в космический вакуум; он был одет в специально сконструированный скафандр. Его деятельность вне корабля продолжалась 10 мин. Это было в марте 1965 г. во время полета корабля «Восход-2» (рис. 4). Первый космонавт США, который вышел в открытый космос в скафандре, был Эдвард Уайт. Это произошло в июне того же года во время полета корабля «Джемини-4». Деятельность Уайта в открытом космосе (рис. 5) продолжалась 21 мин. С помощью ручной маневровой установки (которая будет рассмотрена ниже) космонавт Уайт мог совершать прямолинейные перемещения и повороты. При этом он ни разу не терял ориентации и контроля над своими движениями. Подвижность космического скафандра была достаточной для выполнения задания вне корабля. Результаты первых выходов космонавтов в открытый космос показали необходимость большего охлаждения полости космического скафандра. В то же время они показали (и это более важно), что деятельность вне корабля может стать обычным и безопасным мероприятием.

ТРЕБОВАНИЯ К КОНСТРУКЦИИ И ОСОБЕННОСТИ СУЩЕСТВУЮЩИХ КОСМИЧЕСКИХ СКАФАНДРОВ И ПОРТАТИВНЫХ СИСТЕМ ЖИЗНЕОБЕСПЕЧЕНИЯ

ОБЩИЕ ТРЕБОВАНИЯ К ВЫХОДНЫМ КОСМИЧЕСКИМ СКАФАНДРАМ

По способам использования космических скафандров последние можно разделить на два класса:

1.Космические скафандры для деятельности в открытом космосе, позволяющие космонавтам производить различные работы на поверхности космического корабля или космической станции или на некотором удалении от них.

2.Космические скафандры для внебортовой деятельности на поверхности небесных тел. К этому типу относятся скафандры, которые надевали космонавты при прогулках и работе на поверхности Луны.

В. Смит приводит следующие четыре группы факторов, определяющих перспективы скафандростроения на ближайшие 5, 10, 15 лет:

1)связанные с программой полета,

2)с системой корабля,

3)с эксплуатацией скафандра,

4)с взаимодействием человек - машина.

Первая группа факторов приведена на рис. 6, где перечислены основные операции в космосе по программе перспективных полетов США, основные этапы, которые можно предвидеть в большинстве этих полетов, и вытекающие отсюда эксплуатационные характеристики, которым должны удовлетворить разрабатываемые в обеспечение этих полетов космические скафандры. Вообще говоря, эти эксплуатационные требования связаны с возможностью космонавта выполнять специфические задачи, которые потребуются от него в этих полетах.

На рис. 7, а показано, что факторы, определяемые системой, включают тип системы, специфические подсистемы - типы космического скафандра, конструктивные решения подсистем и конструктивные ограничения. К группе конструктивных решений подсистем относятся особенности скафандров: «мягкий» космический скафандр - это подсистема скафандра, изготовленная почти целиком из гибких материалов; «полужесткий» космический скафандр изготовляется из гибких и негибких материалов, взятых примерно в равных пропорциях; в «жестком» космическом скафандре для большинства деталей использованы негибкие материалы. Следует заметить, что некоторые конструкторы вместо термина «полужесткий» используют термин «гибридный».

Факторы связанные с системой, т. е. мощность, вес, объем и т. д.,- это те основные моменты для инженера, который должен объединить требования к системам жизнеобеспечения с требованиями к другим элементам космического корабля.

Эксплуатационные факторы, как показано на рис. 7, б, принципиально связаны с физическими условиями, при которых будут использоваться космические скафандры. Здесь встают вопросы снабжения, обслуживания и общего применения, а также физических воздействий, которые необходимо учитывать в каждом случае применения скафандров. Сюда также входит учет психологических факторов, которые могут возникнуть при работе в данных условиях. Конструктор должен учесть, что эти факторы могут привести к повышенному расходу запасов системы.

На рис. 8 представлены факторы «человек - машина».

Рис. 6. Особенности полета, учитываемые при проектировании систем космического скафандра





Рис. 8. Факторы «человек - машина», рассматриваемые при проектировании систем космического скафандра

Они относятся к применению скафандра и определению задач системы «человек - машина», так как степень согласованности между человеком и машиной влияет на выполнение задач.

Требования, описанные выше, относятся главным образом к функциональным характеристикам скафандра. Имеются, однако, и другие важные требования, которые необходимо учитывать и которые могут оказать существенное влияние на окончательную конструкцию скафандра. Прежде всего для выполнения полезной работы необходима подвижность скафандра. Этот важный элемент конструкции скафандра более подробно рассматривается в последнем разделе. С этим требованием связано другое - приемлемые размеры скафандра. Третье требование заключается в огнеупорности. В некоторых случаях скафандр может вентилироваться газом, обогащенным кислородом. Скафандром можно также пользоваться внутри космического корабля, в атмосфере которого может быть высокое парциальное давление кислорода. В связи с программой пилотируемых космических полетов были разработаны многочисленные неметаллические огнеупорные ткани. В табл. 1 представлены скорости горения этих тканей наряду с их физическими свойствами и газообразованием. Дополнительным требованием является легкость надевания и снимания скафандра. Наконец, для материалов, выбранных для изготовления космического скафандра, важнейшими качествами являются прочность и износоустойчивость. Материал должен не только полностью выдерживать все возможные разности давления, но и не протираться при ходьбе космонавта, при вставании на колени и не рваться при случайном падении; в то же время скафандр должен позволять космонавту выполнять полезную работу и проводить эксперименты как внутри космического корабля, так и на внешней поверхности, как, например, на поверхности Луны.

ОБЩИЕ ТРЕБОВАНИЯ К НАСПИННЫМ РАНЦАМ

Основной источник снабжения для космонавта, одетого в скафандр,- это портативная система жизнеобеспечения, которую космонавт может носить за спиной. Эта установка снабжает человека кислородом для дыхания, регулирует давление в скафандре, обрабатывает рециркулирующий газ путем удаления двуокиси углерода, запахов, некоторых газообразных микропримесей и излишней влаги, регулирует температуру системы путем отвода избытка тепла, обеспечивает сигнализацию о неисправностях, голосовую связь и передачу основных параметров по телеметрии. Система теплоотвода должна быть рассчитана не только на тепло, образующееся в процессе обмена веществ космонавта и выделяемое узлами портативной системы жизнеобеспечения, но и на тепло, поступающее (или сбрасываемое) от лунной или планетарной среды через теплоизоляцию.

ФИЗИОЛОГИЧЕСКИЕ И ЭКСПЛУАТАЦИОННЫЕ ПАРАМЕТРЫ

В табл. 2 обобщены физиологические и эксплуатационные параметры существующих и будущих систем жизнеобеспечения. Интересно заметить, что еще в 1940 г. В. А. Спасский дал проектные рекомендации по оборудованию для регенерации воздуха в отсеках космического корабля, многие из которых весьма близки к рекомендациям, разработанным для сегодняшних систем.

ГАЗОВЫЕ СМЕСИ ДЛЯ ДЫХАНИЯ, ВЕНТИЛЯЦИЯ И ТЕРМОРЕГУЛИРОВАНИЕ

Основные параметры атмосферы в скафандре (барометрическое давление, газовый состав, температура, влажность и скорость вентиляции) должны быть выбраны, исходя из физиологических потребностей человека (при желательном уровне его активности) и из технической возможности удовлетворить эти требования.

Физиологически важной для космонавта является величина давления в полости космического скафандра, которая должна быть такой же, как и в отсеке космического корабля или станции.



Однако создание космического скафандра с такой атмосферой, особенно с атмосферой, близкой по составу к земной,

технически затруднительно, главным образом из-за того, что подвижность человека, одетого в скафандр с большим перепадом давлений на стенках, резко ограничивается.

Для обеспечения большей подвижности космонавта в космическом скафандре, для облегчения его, для снижения утечек и по целому ряду других технических соображений желательно в полости скафандра поддерживать минимальное физиологически допустимое давление (с учетом давления окружающей среды).

До недавних пор указанные выше факторы побуждали инженеров и физиологов искать компромиссное решение для особых условий и задач планируемого полета. Последние разработки открыли возможность увеличения подвижности, практически не прибегая к компромиссным решениям. Эти разработки рассмотрены ниже.

В зависимости от реальных условий полета и возможности десатурации азота из организма давление в скафандре, рассчитанном на продолжительное пребывание в нем космонавта, обычно выбирается в пределах от 200 до 300 мм рт. ст.

В крайних случаях давление в скафандре может быть снижено до такого уровня, при котором еще может поддерживаться достаточное для выполнения заданной работы кислородное обеспечение.

Конечно, при любом выбранном режиме давления для космонавта необходима газовая смесь, обогащенная кислородом, чтобы обеспечить необходимое парциальное давление кислорода в альвеолярном воздухе.

Для определения оптимального процентного содержания кислорода в газовой смеси можно использовать несколько модифицированную формулу, которую применяют для контроля содержания кислорода в кислородных приборах.


где P sp - абсолютное давление в скафандре в мм рт. ст., Со 2 , - содержание кислорода в процентах.

Если применить эту формулу к случаю, когда давление в скафандре равно 300 мм рт. ст., то окажется, что газовая смесь для дыхания должна содержать не менее 60% кислорода, а при давлении в скафандре 200 мм рт. ст. необходимо подавать почти чистый кислород. В практике полетов «Аполлона», «Скайлэба» применяли чистый кислород (одногазовую атмосферу) при номинальном давлении 194 мм рт. ст.

Двуокись углерода, выдыхаемую человеком, удаляют из атмосферы скафандра путем принудительной вентиляции. Объем необходимой для этого вентиляции зависит от количества углекислоты, выделяемой космонавтом, ее содержания в атмосфере скафандра и ее концентрации в газовой смеси, поступающей извне или от регенерационного патрона (концентрация прорыва). Этот объем приближенно можно определить с помощью классической формулы Петтенкофера, которую для расчетов вентиляции в космических скафандрах впервые применил В. А. Спасский. Для удобства формула была несколько модифицирована,


где V - скорость вентиляции (в л/мин); q - количество двуокиси углерода, выдыхаемой космонавтом (в л/мин); Р реr - допустимое парциальное давление двуокиси углерода в атмосфере космического скафандра (в мм рт. ст.); Р реr - парциальное давление двуокиси углерода в газовой смеси, поступающей от регенерационного патрона (в мм рт. ст.).

При расчетах объема вентиляции С. А. Гозулов и Л. Г. Головкин и Д. М. Иванов и А. М. Хромушкин рекомендуют ориентироваться на среднее ожидаемое выделение двуокиси углерода и его допустимое парциальное давление (от 7 до 8 мм рт. ст.). Такое содержание двуокиси углерода во вдыхаемой газовой смеси не приводит к заметным ответным реакциям в функциональном состоянии человеческого организма даже при длительном пребывании в такой атмосфере в течение нескольких дней.

Расчет вентиляции производится с учетом среднего уровня выделения двуокиси углерода, причем предполагается, что концентрация двуокиси углерода во время усиленной физической работы космонавта может превысить рекомендованное значение в 2 раза. В этом случае парциальное давление двуокиси углерода может приблизиться к предельной величине, указанной В. А. Спасским, т. е. к 15 мм рт. ст.

Расчетные характеристики ранцевой системы скафандра «Аполлон» в отношении двуокиси углерода были следующими: 1) первые 2,5 часа уровень парциального давления двуокиси углерода не должен превышать 7,6 мм рт. ст., 2) следующие полчаса - 10 мм рт. ст. и 3) остальное время - 15 мм рт. ст. Фактические уровни парциального давления двуокиси углерода в полете «Аполлон» при выполнении работ на поверхности Луны были примерно на 2 мм рт. ст. меньше. Для разрабатываемого внебортового космического скафандра с давлением 414 мм рт. ст. парциальное давление двуокиси углерода не должно превышать 7,6 мм рт. ст. (у носовой полости) при скорости вентиляции 3304 см 3 /сек и при установившемся уровне метаболизма 302 ккал/час. Уровень метаболизма является важнейшим элементом при разработке систем подачи дыхательной смеси в шлем. Повышенное парциальное давление двуокиси углерода в космическом скафандре, если оно имело место в течение короткого времени, не приводит к отрицательным последствиям, хотя и вызывает повышенную нагрузку на физиологические системы организма.

Температура и влажность относятся к числу параметров газовой среды внутри космического скафандра, которые менее всего поддаются стандартизации. Это можно объяснить особыми условиями системы терморегулирования в космических скафандрах. Можно также объяснить это и большой способностью человеческого организма приспосабливаться к меняющимся условиям теплообмена и существенными колебаниями величин выделяемых космонавтом тепла и влаги при выполнении различных операций в космическом скафандре. При выполнении тяжелой физической работы выделение человеком тепла в 5-6 раз превышает тепловыделение в состоянии покоя (450-500 ккал/час против 80-90 ккал/ /час соответственно). Еще большая разница наблюдается в отношении выделения человеческим организмом влаги в тех же сравниваемых условиях (600-800 г/час против 40- 50 г/час).

Для обеспечения нормальных условий теплообмена в различных условиях тепловыделения необходимо, чтобы системы терморегулирования и регулирования влажности в космическом скафандре имели широкий диапазон.

Принимая во внимание существенные различия в требованиях людей в отношении теплового комфорта и сложность автоматических регулирующих устройств, которые могли бы следить за уровнем тепловыделения и выделения влаги человеком, управление удалением влаги и избыточного тепла в космическом скафандре предпочтительно выполнять вручную. Это позволяет космонавту создавать в своем космическом скафандре такие условия, которые отвечают его индивидуальным потребностям и степени его физической активности в данный период.

Традиционным методом регулирования теплообмена и удаления влаги, который используется в большинстве скафандров пилотов боевых и гражданских самолетов, является продувка полости скафандров осушенным воздухом (содержание влаги не более 5-8 г/ /м 3), охлажденным или нагретым до значительной температуры (от 10 до 80° С). Приближенная оценка возможностей этого метода показывает, что для вентиляции космических скафандров при приемлемых расходах (до 300 л/мин) применение вентиляционного воздуха позволит удалить из скафандра до 200 ккал/час тепла и до 200-270 г/час водных паров.

При высоком уровне расхода энергии космонавтами, выполняющими работы в замкнутом пространстве, и существенном снижении теплообмена между космическим скафандром и внешней средой необходимо, чтобы, кроме вентиляции космического скафандра, использовались и другие, более эффективные методы теплорегулирования. Эти методы должны обеспечить отвод всего тепла и всей влаги, выделяемых космонавтом, а также тепла, выделяемого в результате работы индивидуальных систем и устройств самого скафандра.

Если использовать для этих целей контактные или радиационные методы охлаждения, космонавт может испытывать определенные колебания температуры и влажности, которые трудно рассчитать п стандартизировать. Кроме того, величины степени вентиляции космического скафандра (50 л/мин), температуры (от +10 до +15° С) и влажности (от 20 до 85%), приведенные в некоторых исследованиях, были установлены без учета индивидуальных колебаний тепловыделения и влагоотделения космонавтов, и принимать эти величины в качестве нормальных для космического скафандра было бы опрометчиво.

В американских системах пользуются двумя видами охлаждения при длительной работе вне корабля. При внебортовых работах вентиляция со скоростью 2832 см 3 /сек (фактических) обеспечивает некоторое охлаждение за счет испарения влаги с поверхности тела космонавта. В основном же охлаждение выполняется за счет использования одежды с жидкостным охлаждением (LCG) путем теплопроводности. Такая одежда состоит из нейлонового шифона, между слоями которого находятся поливиниловые трубки, расположенные так, чтобы одежда была достаточно удобной. Для обеспечения охлаждения за счет теплопроводности предусмотрен спандекс-слой (Spandex), который плотно прижимает трубки к телу. Такой способ охлаждения позволяет космонавту выдерживать метаболические тепловые нагрузки величиной до 300 ккал/час при теплопритоке извне 75 ккал/час в течение 5 час.

Советские ученые описывают несколько способов отвода тепла из космических скафандров при внебортовой деятельности космонавтов.

1.Охлаждение газовой смеси, циркулирующей в космическом скафандре, в радиационных, испарительных или сублимационных теплообменниках или в теплообменниках, где источником холода является жидкий кислород.

2.Удаление тепла за счет испарения воды в специальных панелях, расположенных в космическом скафандре или в рукавах.

3.Удаление тепла с помощью хладагента, циркулирующего по трубкам особой системы охлаждения, с последующим охлаждением циркулирующей жидкости в теплообменниках. Система водяного охлаждения такого типа может удалять из космического скафандра до 400-500 ккал/час тепла. Температура воды на входе в космический скафандр при этом должна быть в пределах 10-12° С, расход воды должен составлять 1,5-2 л/мин. Способы удаления тепла можно сочетать, можно также дополнить один способ другим. Проблему теплорегулирования, связанную с использованием автономных скафандров, можно решить, либо выбором материала, покрывающего космический скафандр снаружи, с тщательно подобранными свойствами для уменьшения обмена теплоизлучением между скафандром и окружающей средой, либо использованием экранно-вакуумной теплоизоляции. Предлагается для этой цели использовать алюминизированную пленку.

ИЗМЕРЕНИЕ МЕТАБОЛИЧЕСКИХ ПОТРЕБНОСТЕЙ

Обеспечение максимальной работоспособности космонавта, одетого в космический скафандр, требует исследования биомеханики системы человек - скафандр при различных условиях. Е. Рот представил биомеханические расчеты рабочих характеристик человека и расхода энергии при различных рабочих ситуациях. Эти данные полезны при расчете космического скафандра, который был бы адекватен общей метаболической стоимости работы, выполняемой в скафандре. Однако прямую экстраполяцию делать нельзя, поскольку характеристики лунной среды

сильно отличаются от характеристик земной среды.

Одной из важнейших проблем, возникшей перед высадкой на поверхность Луны, было предсказание уровня энерготрат космонавта. Уровень энерготрат представляет собой важный параметр, связанный с длительностью снабжения, которую может обеспечить ранцевое устройство, и со степенью удобств космонавта. При более тяжелой работе человек выделяет больше метаболического тепла, расходует больше кислорода и выделяет больше двуокиси углерода и водяных паров. Все это оказывает сильное влияние на конструкцию и использование ранцевой системы, носимой космонавтом. Энергетические уровни, как уже указывалось, можно определить для данных задач в условиях земного тяготения, но было неизвестно, будут ли эти пропорции выше или ниже в условиях лунного притяжения. Уменьшенный вес самого человека, скафандра, ранцевой системы жизнеобеспечения и т. п. на Луне, казалось бы, должны привести к снижению скорости обмена веществ. Однако уменьшенный вес может означать пониженное сцепление с грунтом при ходьбе. А это в сочетании со свойствами лунного грунта и возможным нарушением равновесия между космонавтом и оборудованием может привести к усилению обмена веществ.

Существенная работа по определению действительного уровня энерготрат была выполнена во время самих лунных полетов. Эти сведения представляют большую ценность для планирования и разработки компонентов систем жизнеобеспечения будущих космических полетов. В табл. 3 приведены средние величины энерготрат космонавтов космических кораблей «Аполлон» во время выполнения операций на поверхности Луны. Уровень энерготрат определяли с помощью телеметрии тремя способами: измерениями теплового баланса, расхода кислорода и по частоте пульса. Тепловой баланс определяли по сравнению температур воды на входе в водоохлаждаемую одежду и на выходе из нее во время деятельности на лунной поверхности, расход кислорода измеряли непосредственно в портативной системе жизнеобеспечения, а частоту пульса во время работ на лунной поверхности сравнивали с тарировочной кривой расхода энергии, полученной на Земле на велоэргометре перед полетом.

Таблица 3. Время внебортовой деятельности на Луне и средний уровень энерготра

Метод определения теплового баланса. Этот метод (рис. 9) включает расчет общего количества тепла, удаленного замкнутой системой жидкостного охлаждения, и скрытой теплоты, отведенной контуром кислородной вентиляции. Общее количество этого тепла приравнивается к сумме метаболического тепла, теплопритока в скафандр и тепла, накопленного человеком. Ощутимое тепло, отведенное вентиляционным контуром, считается пренебрежимо малым и не учитывается.

Основные уравнения теплового баланса:


где Q - передача, накопление или выделение тепла, ккал/час; т - массовый расход, кг/час (определяется в предполетных испытаниях); С - удельная теплоемкость, ккал/кг * °С; АТ- перепад температур на одежде с жидкостным охлаждением (определяется по телеметрии); Ah - приращение энтальпии, кал/кг; TL - контур теплопередачи; VENT - контур вентиляции; МЕТ - метаболическое; ST - накопленное; H L - утечка тепла; О 2 - сухой кислород.

Скрытая теплота испарения, уносимая потоком вентиляции, вычисляется умножением изменения энтальпии вентиляционного газа на фактический расход сухого кислорода. Энтальпию можно определить из психрометрических карт для кислорода при давлении, равном давлению в скафандре, если известны точки росы при входе и выходе. Точка росы для выхода из портативной системы жизнеобеспечения равна температуре газа, выходящего из сублиматора. Точка росы при входе в портативную систему устанавливается по данным предполетных испытаний. Далее, расход в вентиляционном контуре определяется по напору вентилятора с использованием кривых зависимости расхода от напора в скафандре. Расход сухого кислорода находят вычитанием расхода водяных паров из общего расхода вентиляционных газов.

Уровень энерготрат, вычисленный по данному методу, для командира экспедиции «Аполлон-12» во время первого выхода оказался равным от 229 до 265 ккал/час. Метод нуждается в допущении стабильности точки росы на входе в портативную систему жизнеобеспечения и имеет еще несколько источников ошибок, таких, как неточности в измерении расхода хладагента, вентиляционных расходов, перепадов температуры на одежде с жидкостным охлаждением и утечки тепла.

Метод определения расхода кислорода. Расход кислорода зависит только от скорости

Рис. 9. Схема для расчета теплового баланса

1- космонавт,

2- теплоизлучение организма,

3- запас тепла в организме,

4- тепловой поток через шлем,

6- питьевая вода,

7- контур теплопередачи,

8- тепло от контура теплопередачи,

9- контур вентиляции,

10- тепло от контура вентиляции,

11- электрооборудование,

12- тепло от электрооборудования,

13- гидроокись лития,

14- тепло от гидроокиси лития,

15- сублиматор,

16- тепло от сублиматора,

17- тепло к питьевой воде

обмена веществ. Поэтому этот метод представляет собой наиболее прямое измерение скорости обмена веществ и утечек из скафандра, которое можно выполнить на основе телеметрических данных. Соотношение между расходом кислорода и скоростью обмена веществ известно давно. Основное уравнение, выражающее это соотношение, имеет вид


где Q met - метаболическая нагрузка, ккал; mо 2 - массовый расход кислорода, кг; RQ - дыхательный коэффициент, выражающий отношение объема выделяемой двуокиси углерода к объему израсходованного кислорода.

Масса кислорода, выданного портативной системой жизнеобеспечения, вычисляется по падению давления в баллоне (телеметрические данные) с использованием коэффициента сжимаемости, учитывающего отличие кислорода от идеального газа. Массу израсходованного кислорода находят вычитанием утечки кислорода из скафандра из массы кислорода, продуцируемого портативной системой жизнеобеспечения. Значение дыхательного коэффициента берут по данным наземных испытаний.

Используя этот метод, установили, что уровень энерготрат у командира экспедиции «Аполлон-12» во время первого выхода составил 211 ккал/час. Источником ошибки в этом методе является неопределенность утечек из скафандра, неточность отсчета давления кислорода и произвольный выбор дыхательного коэффициента RQ.

ПОДВИЖНОСТЬ

Одной из главных проблем при создании надувных скафандров еще со времен Б. Поста является их подвижность. Когда скафандр находится под давлением, он теряет гибкость и препятствует движениям космонавта. По этой причине конструкторы пытаются совместить минимальное давление в скафандре с физиологическими требованиями жизнеобеспечения и декомпрессии.

Требование подвижности к надувному скафандру наиболее трудно удовлетворить технически. Сочленения скелета допускают два вида движений: вращение и сгибание

Таблица 4. Классификация и механизация основных движений тела

(соответствует техническим соединениям: вал с втулкой и шаровой шарнир). Сложные движения, которые допускаются шаровым шарниром (плечевой или тазобедренный суста-вы), можно разложить на два указанных выше простых движения. Технический успех жесткого скафандра определяется конструкцией его сочленений, которые могут двигаться подобно сочленениям тела с минимальным трением и минимальным изменением объема скафандра. Характер движений в суставах и сочленениях представлен в табл. 4.

Проблему подвижности локтевых и коленных сочленений можно решить, используя секции в виде апельсиновых долек в скафандре с прочными продольными струнами, расположенными вдоль нейтральной линии, длина которых не изменяется при сгибании сустава. Шарниры плечевого и бедренного сочленений скафандра чаще всего делают из гофрированных металлических листов, которые снабжены дополнительными тягами, скользящими по роликам или направляющим стержням. Подвижность кисти обеспечивается герметически уплотненными сочленениями с небольшим вращением. Плечевое сочленение разрешает свободное движение рук в вертикальной плоскости. Локтевое сочленение допускает движение руки вдоль продольной оси.

Перчатки космического скафандра обеспечивают подвижность и комфорт следующим образом: они раскроены так, что пальцы наполовину согнуты, и снабжены сочленениями типа апельсиновых долек. Шлемы бывают двух типов - пространственные или вращающиеся. В пространственных (трехмерных) шлемах возможно свободное движение головы внутри них. Вращающиеся шлемы поворачиваются при повороте головы космонавтом. Герметизация при повороте обеспечивается в месте сочленения шлема с воротом скафандра.

ОБЗОРНОСТЬ И ЗАЩИТА ГЛАЗ

Длительный космический полет требует, чтобы человек работал в совершенно своеобразных условиях среды, в которых интенсивность видимой и невидимой радиации изменяется, уровни контраста также меняются, а зрительные сигналы, основанные на эффектах тенп п рассеяния света, совершенно различны.

Одной из наиболее критических проблем для конструкторов космических скафандров является создание обзорного устройства, обеспечивающего необходимую защиту зрения.

В табл. 5 перечислены некоторые основные факторы, которые приходится учитывать при проектировании обзорного устройства для шлема космического скафандра.

Таблица 5. Физиологические факторы, влияющие на конструктивные решения обзорного устройства


Обзорное устройство, разработанное для варианта космического скафандра «Аполлон», предназначенного для выхода на лунную поверхность, было спроектировано с учетом факторов, перечисленных в табл. 5. Внешнее смотровое стекло этого двойного устройства обладает высокой отражательной способностью в отношении инфракрасной радиации (общая прозрачность примерно 18%). Такое свойство было обеспечено осаждением в вакууме тонкого слоя золота (толщина слоя 375 А). Проблема устранения обратного отражения изображения самого космонавта, которое может вызвать некоторые зрительные искажения, была решена с помощью интерфе-ренцирующего покрытия. При его исследовании было установлено, что обратное отражение составляет всего 8-9%.

Внутреннее остекление защищает космонавта от ультрафиолетовых лучей. Оно отличается высокой прозрачностью, необходимой для работы в условиях лунной ночи. Стекло отражает инфракрасные лучи, что позволяет использовать теплоизлучение головы космонавта для предотвращения конденсации и замерзания влаги на внутренней поверхности смотрового окна. Светофильтр космического скафандра, спроектированного в СССР, снижает интенсивность солнечного света до 3-15%; часть солнечной радиации с длиной волны менее 0,35 мкм, которая биологически особенно вредна, не проходит через остекление, а прозрачность для инфракрасной области спектра ограничивается 5-10%

КОСМИЧЕСКИЙ СКАФАНДР И ПОРТАТИВНЫЕ СИСТЕМЫ ЖИЗНЕОБЕСПЕЧЕНИЯ

В табл. 6 приведены данные о функциональных и конструктивных особенностях скафандров США, а в табл. 7 - о системах выходных скафандров и о деятельности космонавтов вне корабля. Космические скафандры* использованные в советской программе исследования космоса, разделяются на два типа. Системы космических скафандров «Восток» й «Восход-2» отличаются вентиляцией открытого цикла. На рис. 10 приведена схема системы космического скафандра, который использовали на космическом корабле «Восток».

В скафандре «Восход-2» космонавт выходил в открытый космос, неся на спине резервуар. с чистым кислородом.

Второй тип космического скафандра, используемого в космических исследованиях в СССР, относится к регенеративному типу. Такой скафандр был применен в программа «Союз». На рис. 11 приведена блок-схема системы жизнеобеспечения для таких космических скафандров.

Основными элементами космических скафандров являются оболочка, съемные перчат-ки, гермошлем и автономная или бортовая системы жизнеобеспечения. Оболочка состоит из силового слоя, состоящего из прочной ткани и системы троссов и шнуровки. Эта оболочка создает прочность скафандру, сохраняет форму, противодействует избыточному давлению, а также обеспечивает возможность регулировки размеров. Под силовым слоем размещается герметический слой. Тепловая изоляция обеспечивается эластичным слоем с низкой теплопроводностью. На внутренней поверхности этого слоя выполнена система, вентиляции, через которую поступает газовая: смесь к различным участкам, скафандра. Эти: слои космического скафандра, в различных, моделях могут быть едиными или комбинированными.

Первый американский космический скафандр для пребывания вне корабля известен под обозначением G-IV-C (рис. 12). Самый внешний слой этого скафандра был выполнен из теплостойкого нейлонового материала. Следующий силовой слой - из сетчатого материала, специально рассчитанного на обеспечение подвижности и на противостояние давлению в скафандре. Герметический слой выполнен из нейлона, покрытого неопреном. Для защиты от теплового излучения и от мик-

Таблица 7. Итоги внебортовой деятельности в открытом космосе



Рис. 10. Система жизнеобеспечения космического скафандра на корабле типа «Восток»

1- основной вентилятор,

2- резервный вентилятор,

3- экономайзер,

4- баллоны с воздухом,

5- баллон с кислородом,

6,7 - зарядные штуцеры,

8- редуктор для регулирования скорости потока,

9- кислородный прибор,

10- редуктор кислородного баллона,

11- разъем,

12- баллон с кислородом,

13- регуляторы давления,

14- вентиляционный шланг

Герметический слой выполнен из нейлона, покрытого неопреном. Для защиты от теплового излучения и от микрометеоритов в скафандре имеется слой из алюминизированного материала.

Шлем снабжен откидным козырьком, предназначенным для защиты внутреннего смотрового стекла от ударов и для дополнительной защиты глаз от повышенного уровня ультрафиолетовой радиации вне атмосферы Земли.

Кислород к скафандру поступал через привязной шланг длиной 7,6 м, подсоединенный к кислородной системе космического корабля, и далее через небольшую коробку, закрепленную на космическом скафандре. В этой коробке размещалось небольшое устройство, управляющее величиной давления и вентиляционным потоком. На рис. 13 показана система жизнеобеспечения для этого скафандра.

Сбор мочи и кала в скафандре «Джемини», так же как и в скафандре «Меркурий», осуществлялся с помощью сборных мешков.

Рис. 11. Блок-схема основных агрегатов автономной системы жизнеобеспечения скафандра на корабле «Союз»

1- вентилятор,

2- блок поглощения углекислоты,

3- блок терморегуляции и отделения влаги,

4- основной кислородный баллон,

5- агрегаты кислородного оборудования,

6- датчик абсолютного давления в космическом скафандре и в системе,

7- датчик температуры воздуха, поступающего в скафандр,

8- датчик содержания углекислоты,

9- к скафандру,

10- к приборам управления кораблем и телеметрической системе,

11- отвод паров,

12- от скафандра

Сборником мочи служил эластичный латексный резервуар, прикрепленный к прорезиненному мешку. Сборником кала - пластмассовый мешок с круговой адгезивной обкладкой.

Во всех пилотируемых космических полетах осуществлялось медицинское наблюдение за космонавтами в реальном времени с помощью телеметрических устройств.

Измеряемые параметры получали с помощью наклеек с мягкими биодатчиками. Таким образом можно было получать электрокардиограмму, измерять частоту дыхания и получать дополнительную физиологическую информацию, включая температуру тела или скафандра и уровень содержания углекислоты. Устройство мягких наклеек с биодатчиками показано на рис. 14. При исследовании Луны наряду с жидкостным охлаждением внутренней одежды, портативной системой жизнеобеспечения (в наспинном ранце) и аварийной кислородной системой применялись лунное обзорное остекление шлема и другие устройства, входящие в специальный подвижный внебортовой узел «Аполлон»

Рис. 12. Космический скафандр проекта «Джемини» для выхода в открытый космос

1- нижнее белье,

2- вентиляционный слой для создания комфортных условий,

3- герметичная оболочка,

4- силовая оболочка (соединительная сетка),

5- буферный слой,

6- термослой с алюминиевым покрытием,

7- фетровая прокладка,

8- наружный слой

Рис. 13. Система жизнеобеспечения «Джемини-4» для выходного скафандра

1- клапан,

2- регулятор давления,

3- запорный клапан,

4- баллон с кислородом,

5- расходный регулятор скафандра и клапан сбросадавления,

6- манометр,

7- ручной кислородный аварийный клапан,

8- ограничитель питающего канала потока,

9- штуцер питающего канала,

10- биотелеметрия и коммуникации,

11- фал,

12- соединение с парашютом,

13- контрольный клапан,

14- привязной фал в сборе длиной 25 футов (7,62 м),

15- ограничитель расхода,

16- U-образные штуцера,

17- быстроразъемное соединение,

18- клапан восстановления давления в кабине


(EMU). На рис. 15 показано снаряжение для деятельности на поверхности Луны по программе «Аполлон». Как видно на фотографии, внебортовой скафандр состоял из основного космического скафандра «Аполлон», поверх которого надевалась одежда для защиты от теплоизлучений и метеоритов. Основной скафандр состоял из нейлонового внутреннего слоя, нейлоновой покрытой неопреновым каучуком герметической оболочки и нейлонового же ограничивающего слоя силовой оболочки. Внешние слои с внутренней стороны изготовлялись из материала «Номекс» и двух слоев ткани «Бета», покрытой тефлоном. Кислородное соединение, коммуникации и провода биомедицинских датчиков были прикреплены к разъемам на туловище скафандра. Под это снаряжение надевалась внутренняя одежда с жидкостным охлаждением. Она выполнялась из трикотажного материала «нейлон-спандекс» с сетью пластиковых трубочек, по которым циркулировала охлаждающая вода.

Жизнеобеспечение во время деятельности на поверхности Луны осуществлялось с помощью ранцевой портативной системы жизнеобеспечения. Эта система снабжала космонавта кислородом и подавала охлаждающую воду к внутренней одежде (рис. 16). В нее входили также оборудование связи и телеметрии, источники питания и т. п. Система удаляла углекислоту из вентиляционного потока и обеспечивала передачу информации по телеметрии. В верхней части ранца (см. рис. 15) была расположена дополнительная система подачи кислорода, которая была рассчитана на снабжение газообразным кислородом в непредвиденном случае в течение минимум 40 мин.

Работа портативной системы жизнеобеспечения происходила следующим образом. Вода, циркулирующая по трубкам охлаждения внутренней одежды, отбирала метаболическое тешго и обеспечивала охлаждение за счет теплопроводности. Затем эта вода проходила в сублиматор и там охлаждалась. Система кислородной вентиляции подавала кислород, удаляла двуокись углерода и другие газы и регулировала влажность. Загрязняющие примеси удалялись из кислорода при входе его в ранец с помощью патрона из активированного угля. Двуокись углерода связывалась химически с

Рис. 14. Наклейки с биодатчиками (программа «Джемини»




Рис. 15. Снаряжение для выхода на поверхность Луны (программа «Аполлон»)

гидроокисью лития. Излишняя влага в газовом потоке задерживалась фитильным водо-сепаратором. Поток газа охлаждался в теплообменнике (сублиматорном). Система кислородной подачи являлась независимым устройством открытого цикла, которое могло или подавать кислород в случае аварии основной системы снабжения, или открывать контур потока в случае полного выхода из строя вентиляционной системы ранца.

Удаление отходов во внебортовом скафандре осуществлялось с помощью калоприемни-ка и сборника мочи и устройства передачи (рис. 17). Калоприемник состоял из эластичных трусиков с адсорбирующим подкладочным слоем в области ягодиц и с отверстием для половых органов в передней части. Эта система допускала непреднамеренную дефекацию в момент, когда космонавт одет в скафандр и последний находится под давлением. Подсистема собирала кал и предотвращала его попадание на одежду. Влага из фекалий абсорбировалась подкладочным слоем и испарялась в атмосферу скафандра, откуда затем удалялась через систему вентиляции. Емкость системы сбора фекалий составляла примерно 1000 см 3 твердого вещества. До сих пор система сбора фекалий во время вылазок на Луну космонавтами не использовалась. Устройство сбора и передачи мочи в скафандре обеспечивало сбор и промежуточное хранение жидких отходов во время запуска, внебортовой деятельности или в непредвиденных случаях, когда бортовая система удаления отходов космического корабля не могла быть использована. Эта система могла собирать до 950 см 3 жидкости со скоростью до 30 см 3 /сек.

Рис. 16. Нижнее белье с жидкостным охлаждением

1- застежка-молния,

2- штуцер,

3- магистраль,

4- трубки,

5- дозиметр

Рис. 17. Устройства для сбора фекалий (а) и сбора и отвода мочи (б) Рис. 18. Остекление лунного скафандра

1- боковое стекло,

2- центральное стекло,

3- козырек,

4- солнцезащитное устройство,

5- защитное устройство,

6- покрытие,

7- застежка

Рис. 19. Мешочек с водой для пользования при выходе на поверхность Луны в скафандре «Аполлон»

Для работы этой системы никаких ручных регулировок не требовалось. Створчатый обратный клапан предотвращал обратное течение из сборного мешка. Собранную мочу можно было перелить через оболочку скафандра в бортовые емкости для мочи командного отсека или лунного модуля во время его наддува или декомпрессии. Устройство для сбора мочи размещалось поверх внутренней одежды или под ней; оно соединялось шлангом с мочепроводным ниппелем на скафандре.

Остекление шлема (LEVA) в лунном скафандре, как и в снаряжении «Джемини», было двойным. Стекла устанавливались на шарнирах на поликарбонатной оболочке, прикрепленной к шлему. Остекление обеспечивало защиту космонавта от ударов микрометеоритов, от теплового, ультрафиолетового и инфракрасного излучений.

Внутреннее лицевое стекло использовалось для работы в темноте или в тени и отличалось высокой прозрачностью в области видимых лучей. Это стекло было сделано из поликарбоната, который обеспечивает защиту от ультрафиолетовой радиации. Наружное стекло защищало космонавта от инфракрасных лучей, отражаемых лунной поверхностью благодаря покрытию его внутренней поверхности тончайшим слоем золота. Начиная с полета «Аполлона-12» к остеклению добавили сверху солнцезащитный козырек в средней части обода шлема. На рис. 18 показано остекление лунного скафандра.

Другой модификацией со времени полета «Аполлона-12» было добавление мешочка с питьевой водой объемом 1080 см 3 , который крепится внутри шейных колец скафандра (рис. 19). Космонавт мог сделать глоток воды объемом от 15,3 до 20,3 см 3 из мешочка через трубку диаметром 3,2 мм, конец которой был расположен недалеко от рта. Мешочек заполнялся водой из переносного водяного бачка лунного модуля.

НОВАЯ ТЕХНОЛОГИЯ КОСМИЧЕСКИХ СКАФАНДРОВ

В настоящее время прилагаются большие усилия для решения новых проблем и устранения недостатков, обнаруженных при пользовании космическими скафандрами и их системами. В результате этих усилий увеличена подвижность скафандра (рис. 20). Уменьшение величины моментов вращения и увеличение срока службы (числа вращательных движений) сочленений, достигнутое во всех соединениях усовершенствованных космических скафандров для внебортовых операций, представляется большим техническим достижением. Это было обеспечено путем использования сочленений с постоянным объемом, в которых не совершается работа по изменению объема против давления.

Рис. 20. Подвижность различных космических скафандров

1- «Меркурий»,

2- «Джемини»,

3- «Аполлон-Скайлэб»,

4- новые скафандры

* Повышенная подвижность определяется как увеличенные степени подвижности во всех плоскостях плюс пониженные моменты трения в сочленениях плюс стабильность многопозиционных сочленений

** Скафандры предназначены для внебортовых работ на орбитах и лунной поверхности

Рис. 21. Космический скафандр типа RX-1

Для сравнения можно отметить, что в сочленениях первых скафандров «Джемини» использовалась соединительная сетка (не сохраняющая постоянного объема), а сочленения в первых скафандрах «Аполлон» представляли собой фасонные гофрированные сочленения, также не сохраняющие постоянного объема.

Примером жесткого скафандра, имеющего сочленения с постоянным объемом, является скафандр модели RX-1 (рис. 21). В рабочем состоянии скафандр сохраняет практически любую форму, так как при этом обеспечивается поддержание постоянного объема. В то же время он позволяет выполнять практически любые движения тела с минимальными затратами энергии. Основным принципом скафандра постоянного объема является использование вращающихся гофрированных сочленений.

Во вращающемся гофрированном сочленении используются жесткие кольца, снабженные ограничителем продольного движения; благодаря этому ткань сочленения легко складывается и разворачивается, сохраняя объем сочленения при максимальном диапазоне его движения.

Металлические кольца в гофрированном сочленении входят одно в другое. Рукав из прорезиненной ткани закрепляется между этими кольцами и действует как герметичная оболочка. Кольца размещены таким образом, что ткань между ними укладывается в виде складок или гармошки. В этом случае максимальная нагрузка является чистым растяжением, которое может легко поглощаться подвижными стальными тросиками, соединяющими все кольца. Первое и последнее кольца приварены к жестким частям конструкции скафандра. При сгибе сочленения ткань складывается или расправляется между кольцами; при этом увеличение объема на одной стороне сочленения компенсируется таким же уменьшением объема на другой стороне.

Таким образом, общее изменение объема равно нулю и на это не тратится каких-либо усилий. Поэтому момент вращения, необходимый для изгиба сочленения, определяется только внутренним трением ткани и тросов

В исследовательском центре Эймс НАСА разработан другой жесткий скафандр АХ. За исключением мягких перчаток, весь скафандр выполнен из жестких материалов и отличается исключительной подвижностью с малыми моментами трения и малыми утечками. Особенностью программы разработки этого скафандра, обеспечивающего такую большую подвижность, было использование сочленений в виде «самоварной трубы» (рис. 22).

Для преодоления недостатков, связанных со складыванием «негнущихся жестких скафандров», в НАСА предпринята разработка «гибридного» скафандра. Такой скафандр конструируют из жесткого материала, но с участками из более мягкой ткани (рис. 23).

Такая комбинация объединяет преимущества жестких и мягких космических скафандров. В этих скафандрах в плечевых и тазобедренных сочленениях использованы сочленения типа «самоварная труба», а в локтевом, коленном, лодыжечном суставах и в области талии - фасонные сильфонные складки. При складывании скафандра ткань сочленений спадается.

Для облегчения надевания в скафандре сделан единый разъем в области талии. Моменты трения в таком скафандре почти вдвое меньше, чем в существующих конструкциях. Кроме того, он получается «безразмерным». Такой скафандр отличается также вновь разработанным плечевым сочленением на пяти подшипниках. В целом скафандр вместе с теплоизоляцией и противометеоритной защитой можно сложить в пакет с размерами 37,46 см по высоте, 71,1 см в длину и 66 см в ширину.

Гибридная конструкция этого скафандра в сочетании с улучшенными сочленениями постоянного объема обеспечивает прекрасные характеристики подвижности. В плечевом сочленении имеются четыре сегментные секции и пять уплотненных подшипников. Углы сегментов выбраны так, чтобы можно было делать движение рукой в любой плоскости без ограничения и без предварительного программирования. В локтевом сочленении использовано одноосевое складчатое сочленение постоянного объема. Постоянное сочленение состоит из двух эллиптических складчатых секций; одноосевые сочленения выполнены так, что плоскости изгиба расположены под углом 90° друг к другу. Боковые наклоны в талии допустимы в диапазоне примерно ±20°. Наклон вперед в талии допускается в диапазоне 65°; в предыдущих скафандрах этот диапазон был значительно меньше.

Рис. 22. Космический скафандр типа АХ-1

Рис. 23. Новейший космический скафандр (гибридный) для внебортовой деятельности

Рис. 24. Моменты, необходимые для изгиба талии в космических скафандрах с сочленением непостоянного объема (1) и в гибридном скафандре с сочленением постоянного объема (2); давление в скафандре 191 мм рт. ст.

Рис. 25. Перчатки космического скафандра, обеспечивающие большую подвижность

На рис. 24 указаны моменты, необходимые для различных степеней изгиба в талии для существующих скафандров с сочленениями непостоянного объема и для разработанного гибридного скафандра, диапазон изгибов которого расширяется до 100° и более.

Скафандр, рассчитанный на давление 414 мм рт. ст., соответствующее высоте 4880 м. В разработке такого скафандра для внебортовой деятельности будет использована технология создания гибридного скафандра.

При использовании этого скафандра можно отказаться от предварительного дыхания (prebreathing) кислородом, предотвращающего декомпрессионные расстройства. Космонавты экспедиций «Аполлон» прежде чем перейти в атмосферу космического корабля, состоящую из чистого кислорода при давлении 252-264 мм рт. ст., должны были вдыхать чистый кислород в течение примерно трех часов. При такой мере предосторожности никаких инцидентов, связанных с декомпрессией, в космической программе США не наблюдалось.

Однако, если разработка скафандра на давление 414 мм рт. ст. увенчается успехом, при переходе от давления 760 мм рт. ст. в космическом корабле к давлению в скафандре надобность в такой процедуре отпадет.

В процессе выполнения указанной программы на сегодняшний день созданы системы сочленений космического скафандра, которые могут работать в диапазоне давлений в скафандре от 258 до 363 мм рт. ст. Эти системы высокого давления основаны на технике сочленений постоянного объема и используют технологические процессы, удовлетворяющие в принципе требованиям работоспособности, надежности и разрывающего усилия, предъявляемым к скафандру с давлением 414 мм рт. ст.

Усовершенствованные перчатки. По мере увеличения объема и сложности работ в открытом космосе повышаются требования к подвижности пальцевых и кистевых сочленений скафандров. Космические инструменты в будущем станут более разнообразными и более сложными, поэтому необходимо улучшить технологию изготовления перчаток космического скафандра.

На рис. 25 показаны улучшенные перчатки, в которых для обеспечения лучшего захвата использован принцип сочленения постоянного объема. Кроме того, сочетание тканей, использованное для изготовления пальцев перчаток, улучшает их тактильные характеристики.

ВСПОМОГАТЕЛЬНЫЕ СРЕДСТВА ДЛЯ ВНЕБОРТОВОЙ ДЕЯТЕЛЬНОСТИ

Космические инструменты. Различные типы инструментов, которые требуются для выполнения работ в космосе, например при исследовании лунной поверхности, можно видеть на рис. 26.

Исследования показывают, что: 1) силовые инструменты должны быть компактны; 2) необходима разработка какой-то системы для удержания инструмента возле человека независимо от типа инструментов, используемых

при внебортовой деятельности, и 3) если человек привязан, инструменты без отдачи не имеют особых преимуществ перед обычными инструментами.

Подвижная платформа для внебортовой деятельности. Разработка конструкции рабочей платформы для внебортовой деятельности (рис. 27) показала, что маневренная тележка с открытым основанием может помочь космонавту выполнять его задачи в космосе.

Рис. 26. Инструменты для работы в космосе

1- совок,

2- укладка для 20 пакетов,

3- кинокамера с объективом 20 мм,

4- молоток,

5- портативная система жизнеобеспечения,

6- ранец пилота,

7- укладка для колпачков пробозаборных трубок,

8- ранец командира,

9- сменные пробозаборные трубки и шомпол,

10 - мешок для сбора образцов,

11- маркерный карандаш,

12- карандаш с подсветкой,

13- специальный контейнер для забора проб внешней среды,

14- камера с объективом 500 мм,

15- ручные часы - хронограф,

16- манжета для записей,

17- клещи,

18- карман для листков с записями


Движитель платформы доставит космонавта к месту работы. Манипуляторы помогут космонавту при швартовке и будут служить как бы продолжением рук или «внешними руками» после швартовки. Платформа крепится к рабочей площадке якорями.

Телеоператоры. Для расширения пространственных человеческих возможностей, для проникновения во вредную для человека среду, а также для увеличения его энергетических и силовых возможностей можно использовать телеоператоры. Эти устройства могут принимать различные формы. На рис. 28 показаны плечо и рука жесткого космического. скафандра НАСА, предназначенного для внебортовой работы с биоэлектрическим манипулятором (телеоператором). Здесь между движениями руки космонавта в скафандре и механическим исполнителем, размещенным па рабочей платформе, имеется управляемая связь « один-к-одному ».

Широкий набор функций телеоператоров включает монтаж спутников, их ремонт, обслуживание, строительство и использование аварийных устройств.

УСТРОЙСТВА ДЛЯ МАНЕВРИРОВАНИЯ В ОТКРЫТОМ КОСМОСЕ

Автономная ручная маневровая установка. На рис. 29 показано устройство, которое использовал космонавт Эдвард Уайт в программе полета «Джемини-4». Эта система содержит собственный источник холодного газа высокого давления с необходимыми клапанами и соплами для создания управляемой тяги. Для перемещения вперед космонавт нажимает переднюю часть гашетки. Для остановки или для движения назад нужно нажать заднюю часть гашетки. Эта система позволяет выполнять движения вне корабля с существенно меньшей затратой энергии космонавта.

Транспортные средства космонавта. Для программы «Скайлэб» созданы более сложные устройства маневрирования, которые прошли экспериментальную проверку в полетах по этой программе. Сюда входят маневровый исследовательский транспортный аппарат космонавта и маневровый аппарат с ножным управлением. Маневровый исследовательский транспортный аппарат (рис. 30) можно использовать в четырех режимах: в качестве

Рис. 27. Рабочая платформа для вне бортовой деятельности

Рис. 28. Телеоператор


Рис. 29. Автономная ручная маневровая установка

а - схема, б - общий вид;

2- запорный вентиль,

3- патрубок,

4- муфта,

5- регулятор давления,

6- кланан толкающего сопла,

7- узел ручного управления,

8- тянущее сопло,

9- клапан тянущего сопла. 10 - толкающее сопло,

11- баллоны,

12- штифт

Рис. 30. Космонавту управляющий транспортной установкой

ручной маневровой установки, для обеспечения прямолинейного движения, для гироскопической стабилизации пространственного положения и для гироскопического контроля вращательного движения. Аппарат обеспечивает шесть степеней свободы при маневрировании с автономными перезаряжаемыми подсистемами и снабжен широким набором приборов для измерения характеристик системы в полете, движений человека и движения привязного фала. В транспортном аппарате ножного управления (рис. 31) используются ножные рычаги управления, несбалансированные двигатели пространственного положения и двигатели перемещения, действующие примерно в направлении вертикальной оси тела. Космонавт садится на этот аппарат, как на велосипед. Двигатели, прикрепленные к раме, обеспечивают ускорения при перемещении около 0,03 м/сек 2 и номинальные ускорения при изменении пространственного положения около 4 град/сек 2 .

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера.

В Древней Греции «скафандрами» называли хороших пловцов или ныряльщиков. Но по мере развития человеческих технологий так стали называться все средства защиты человека, позволяющие проникать в среды, где незащищенный человеческий организм ждет быстрая и не всегда легкая смерть. Сначала под воду, затем в воздух, а с относительно недавних пор и за пределы Земли.

История скафандра

Первым слово «скафандр» в его современном понимании использовал в 1775 году французский аббат-математик Жан Батист де ла Шапель. Так он назвал свой костюм из пробки, который должен был помочь солдатам форсировать реки. Идея была подхвачена, и уже к середине XIX столетия водолазы были штатной единицей на всех крупных морских флотах. В двадцатых годах XX века английский физиолог Джон Холден предложил использовать костюмы водолазов для защиты здоровья и жизни воздухоплавателей. Он же сконструировал первый подобный скафандр и испытал его в барокамере, имитировав давление, эквивалентное тому, что образуется на высоте в 25 км. Но собрать денег на строительство аэростата для подъема в стратосферу ему не удалось, и на практике костюм испытан не был.

После окончания Второй мировой войны начался бурный прогресс в реактивной авиации и человек стал забираться в воздух все выше и выше. И для покорения новых высот понадобился космический скафандр.

Первые проекты наши и зарубежные

Создание скафандра - это одна из самых технологически сложных и ключевых программ космического проекта. И прогресс в этой сфере достигался за счет соперничества двух космических сверхдержав.

В нашей стране космическими скафандрами первым стал заниматься Евгений Чертовский из Института авиационной медицины. В сороковых годах он разработал 7 типов герметичного снаряжения и первым в мире решил проблему мобильности, сконструировав модель 4-2 с шарнирами. С 1936 года разработкой скафандров космонавтов стал целенаправленно заниматься специально созданный Центральный аэрогидродинамический институт. В результате модель 4-3 содержала уже практически все детали, которые используют в современных скафандрах. В послевоенные годы конструировать скафандры стал Летно-исследовательский институт. А в октябре 1952 года в подмосковном Томилино инженером Александром Бойко был создан особый цех при заводе №918 (сегодня это НПП «Звезда»). Именно на нем и был создан скафандр Гагарина. Если в нашей стране испытания нового снаряжения проводились летчиками, то американцы пришли к созданию своей версии скафандра через стратосферную программу. В начале шестидесятых для испытания космических и авиационных скафандров были построены несколько стратостатов, оборудованных открытыми гондолами для приземления с большой высоты.

Программа оказалась смертельно опасной - из шести стратонавтов погибли трое. Но в итоге проект Excelsior все же закончился успехом. 16 августа 1960 года Джозеф Киттингер установил сразу несколько рекордов. Его падение из стратосферы длилось 4 минуты 36 секунд, за которые пилот пролетел 25 816 метров, развив скорость около 1000 км/ч.

Что такое современный скафандр?

Современный космический скафандр должен решать сразу несколько важных задач. С падением давления человеческому организму становится все труднее усваивать кислород. Без проблем человек может находиться на высоте не более 4-5 км. На больших высотах необходимо добавление кислорода во вдыхаемый воздух, а с 7-8 км человек должен дышать чистым кислородом. При подъеме на высоту выше 12 км легкие теряют возможность усваивать кислород и необходима компенсация давления.

На сегодня существует два типа компенсации давления: механическая компенсация и создание вокруг человека газовой среды с избыточным давлением. Первый вариант - это высотные компенсационные летные костюмы. Тело пилота опутывают ленточки, напоминающие восьмерку, в которые пропущена резиновая камера.

В случае разгерметизации в камеру подается сжатый воздух, она увеличивается в диаметре, сокращая диаметр кольца, опутывающего пилота. Однако в разгерметизированной кабине пилот может провести не более 20 минут. Второй путь - скафандр. По сути, это герметичный мешок, в котором создано избыточное давление. Время пребывания человека в скафандре практически не ограничено, но при этом существенно ограничивается подвижность. Рукав скафандра с избыточным давлением фактически представляет собой аэробалку с давлением в 0,4 атмосферы. Согнуть руку в таких условиях все равно, что согнуть накачанную автомобильную камеру. Поэтому скафандр делают составным, а одна из самых сложных технологий - производство специальных «мягких» шарниров.

Скафандр состоит из двух оболочек: внутренней герметичной и внешней силовой. Первая состоит из листовой резины, для производства которой используется высококачественный каучук. Внешняя оболочка - тканевая (американцы используют нейлон, мы - отечественный аналог, капрон). Она защищает резиновую оболочку от повреждений и держит форму. Очень похоже на устройство футбольного мяча, где кожаный чехол защищает накачанную резиновую камеру. Долго находиться в «резиновом мешке» человек не сможет, поэтому в скафандре присутствует система вентиляции.

Первые скафандры работали по вентиляционному принципу, выбрасывая использованный воздух наружу, как акваланг. По такому принципу были устроены первые скафандры СК-1, скафандр «Беркут», в котором Леонов выходил в открытый космос, спасательные скафандры «Сокол». Однако для длительного пребывания в открытом космосе и для американской лунной программы они не подходили. Для этих целей были разработаны регенерационные скафандры (советские «Орлан» и «Кречет» и американские A5L, A6L, A7L). В них выдыхаемый газ регенерируется, из него отбирается влага, воздух снова насыщается кислородом и охлаждается.

Под скафандр надевается специальный сетчатый костюм водяного охлаждения. А экранно-вакуумная изоляция внешнего костюма работает по принципу термоса и состоит из нескольких слоев специальной полиэтиленовой пленки с напыленным алюминием. В результате нивелируется воздействие как экстремально высоких, так и экстремально холодных температур.

Берегите голову

Шлем - одна из наиболее сложных деталей скафандра. В «авиационную эпоху» шлемы были двух типов: масочные (летчик использовал кислородную маску) и безмасочные (шлем отделялся от остального скафандра герметичной шторкой и становился одной большой кислородной маской с непрерывной подачей дыхательной смеси). В итоге победила безмасочная концепция, которая обеспечивала лучшую эргономику, хотя и требовала большего расхода кислорода. Именно такими стали делать шлемы для космоса, которые в свою очередь разделились на съемные и несъемные. Первый СК-1 комплектовался несъемным шлемом, а вот леоновские «Беркут» и «Ястреб» были съемными. Причем присоединялись они специальным герморазъемом с гермоподшипником, что давало возможность космонавту вертеть головой. Но дополнительная мобильность обернулась громоздкостью конструкции и в дальнейшем от нее отказались.

Обязательный элемент шлема для выхода в открытый космос - светофильтр. На первых моделях использовались светофильтры самолетного типа, покрытые тонким слоем серебра. Но их защитные свойства оказались недостаточными и в дальнейшем светофильтры скафандров стали напылять довольно толстым слоем чистого золота, обеспечивающего пропускание всего 34% света. Разбить «стекло» шлема практически невозможно: оно делается из сверхпрочного поликарбоната лексана. В результате это чудо инженерной мысли безумно дорого - современный американский шлем стоит около $12 млн; российский, как это часто бывает, несколько дешевле.

Скафандры будущего

Не секрет, что космические программы и СССР, и США были большой частью глобального военного соперничества. Крушение СССР резко затормозило прогресс в этой области. Нашей стране долгое время было вовсе не до космоса и лишь недавно последние советские наработки вытащили из-под сукна. Финансирование американской программы также было значительно сокращено (экспедиции на Марс, Венеру, астероиды и вновь на Луну отложены на неопределенное время). Китай пока на оригинальность не претендует и одевает своих тайконавтов в костюмы, сделанные на базе советских.

Так что пока, не имея конкретных, целевым образом финансируемых проектов, конструкторы развлекаются, создавая костюмы а-ля Голливуд. Американский перспективный проект Z-1, за сходство с нарядом мультяшного персонажа, прозвали «скафандром Базза Лайтера». А перспективное детище от Роскосмоса отлично подойдет то ли Робокопу, то ли Терминатору.

Публикации по теме