Приборы для измерения скоростей полета. Приборы для измерения скорости ветра Прибор для измерения скорости движения автомобиля

Измеритель скорости является востребованным прибором, который используется для различных целей. Он измеряет скорость движения объектов и веществ в километрах в час или метрах в секунду.

Виды измерителей скорости

Измеритель скорости очень точное оборудование, которое используется практически повсеместно в различных отраслях промышленности и бытовой жизни. Его конструкция многократно модернизировалась под определенные цели. Существуют следующие разновидности измерителей скорости:

  • Спидометр.
  • Радар.
  • Анемометр.
  • Хронограф.
  • Измеритель газового потока.
  • Скоростемер для воды.
Спидометр

Спидометр – это прибор для измерения скорости колесных транспортных средств. Он устанавливается на панель приборов автомобилей, сельхозтехники, спецтехники и поездов. Он бывает механическим, электронным и электромеханическим.

Механическое устройство оснащается тросом, который выполняет роль привода. Трос подсоединяется к коробке передач или напрямую к оси колеса. Один его оборот соответствует обороту колеса и соответственно прохождению определенной дистанции. Специальный механизм с шестеренками оперативно проводит расчет соответствия пройденной дистанции за определенный промежуток времени к скорости в километрах в час. Подобное оборудование оснащается цифровой шкалой и стрелкой, которая указывает на достигнутую скорость. Механические спидометры используются и сейчас. Их главный недостаток заключается в периодическом износе троса, который необходимо менять. Помимо текущего показания скорости механические модели имеют встроенный в корпусе циферблат, показывающий пробег транспорта с момента начала его эксплуатации.

Электронные спидометры оснащаются датчиками, передающими информацию в электронном виде на циферблат на панели приборов. Она отображается как светящиеся цифры. Отсутствие стрелок позволяет проводить более комфортную визуальную оценку показателей скорости движения.

Электромеханические спидометры являются гибридом двух типов. В них снятие показателей осуществляется электрическим датчиком, но вывод данных о развиваемом темпе движения проводится с помощью стрелки.

Радар

Радар – это прибор предназначенный для измерения скорости движущегося объекта без физического контакта с ним. Обычно такое оборудование применяется правоохранительными органами, а также спортивными судьями. Принцип действия прибора заключается в том, что он создает радиосигнал, который направляется на движущийся объект. После при достижении волны к автомобилю или другому объекту, волна отражается и возвращается на чувствительный элемент устройства. По характеристикам отражаемой волны прибор вычисляет скорость, с которой двигался объект. Существует также устройство, где вместо радиосигнала направляется луч лазера. Выдаваемая на циферблате скорость выражается в километрах за час.

Данное оборудование является не идеальным и дает небольшую погрешность, которая указывается производителем. Радары отличаются между собой не только по классу точности, но и дистанции измерения. Все зависит от мощности излучателя и чувствительного элемента, который принимает отраженные сигналы.

Современные радары существенно отличаются от первых устройств этого класса. Дело в том, что в связи с наличием штрафов за превышение скорости, для защиты от подобных неприятностей началось производство так называемых антирадаров. Данные оборудования позволяют глушить радиосигналы и сбивать показатели, которые выдает радар. В связи с этим полицейские измерители скорости начали оснащаться системой шифрования с особой технологией отправки импульсов и их восприятия. Нельзя сказать, что это дает стопроцентную гарантию от погрешности, но по крайней мере позволяет игнорировать глушение от большинства приборов подавляющих сигналы.

Анемометр

Анемометр – это измеритель скорости передвижения воздушных и газовых потоков. Принцип его действия заключается в наличии лопастей подобных тем, что используются в вентиляторах или в авиации. При прохождении ветра сквозь диффузор анемометра лопасти начинают проворачиваться. Специальный механизм измеряет частоту вращения и определяет скорость движения потока в километрах в час или метрах в секунду. Такое оборудование обычно используется метеорологами для расчетов изменения погоды. По характеристикам движения ветра определяется через сколько времени циклон достигнет определенной местности.

В бытовой жизни анемометры нашли свое применение в авиации. Они устанавливаются на аэродромах для определения параметров силы ветра с целью корректировки диспетчерами пилотов при посадке самолетов. Анемометрами пользуются военные снайперы для корректировки направления полета пули. С помощью специальных таблиц определяется угол сноса пули ветром при полете. Чем слабее воздушный поток, тем по более ровной траектории нужно выпускать пулю. Данный показатель является важным при стрельбе на длинные дистанции.

Анемометры используются в вентиляционных системах. С их помощью проводится регулировка вентиляторов для точной настройки вентилирования без создания сквозняков. Вывод показателей скорости осуществляется с помощью стрелки как в обычных спидометрах для автомобиля или на циферблат, если прибор является электронным или электромеханическим.

Подобное оборудование не всегда имеет механический привод. Существуют также анемометры с теплочувствительным элементом, который начинает деформироваться при остывании. При движении воздушного потока чувствительный элемент обдувается, и его температура снижается. При этом оборудованием проводятся сложные расчеты, в результате которых выводятся точные показатели скорости ветра с поправкой на температуру самого воздуха. Одними из последних изобретений стали ультразвуковые анемометры, которые анализируют растворение звука посылаемого против движения воздушных масс.

Хронограф

Хронограф – это универсальное оборудование, которое используется для различных целей. Одним из способов его применения является измерение скорости движения пули выпущенной из пневматического или огнестрельного оружия. Главные особенности таких устройств в том, что они дают точные показатели скорости движения мелких объектов. Такой измеритель скорости даст возможность снять показатели о характеристиках движения стрелы выпущенной из лука, болта из арбалета или камушка из рогатки.

Хронограф снимает характеристики о полете пули или другого мелкого объекта в метрах за секунду. Также отдельные модели могут иметь возможность переключения показателей на километры в час. Хронографы имеют сложную конструкцию и являются очень чувствительными. Те приборы, которые применяются для измерения скорости движения пуль и прочих боеприпасов выполняются в двух вариантах – дульном и рамочном.

Дульный хронограф устанавливается на дуло пневматического или огнестрельного оружия. С его помощью удастся определить начальную скорость вылета пули. По этому показателю можно судить о мощности оружия и его пробиваемой силе на определенном расстоянии. Чтобы подключить хронограф к дулу оружия требуется наличие специального переходника. Для разных типов оружия переходник отличается, но сам измеритель скорости пули может использоваться практически всегда. Хронографы, которые применяются для пневматического оружия, имеют диапазон измерения до 350-400 м/с. Оборудование для огнестрельного оружия имеют значительно больший диапазон чувствительности.

Рамочный хронограф является более универсальным. Он выполнен в виде рамки, в которую нужно прицелиться, чтобы пуля пролетела между стенками. С помощью такого хронографа можно измерить скорость движения практически любого мелкого объекта. Это может быть стрела и даже брошенный рукою камень. Подобное оборудование более габаритное, но благодаря универсальности пользуется большой популярностью.

Измеритель скорости газового потока

Также существуют измерители скорости для газовых и воздушных потоков, которые двигаются внутри труб. Данные устройства фиксируются на трубопроводах и оснащаются крыльчаткой, которая проворачивается при контакте со средой. Подобное оборудование имеет много общего со счетчиками газа, но в отличие от них оно показывает не какой объем был пропущен всего, а позволяет рассчитать, сколько газа при такой интенсивности перекачки можно провести за определенный промежуток времени. Подобное оборудование выдает показатели не только в метрах за секунду, но и в объеме. Это могут быть литры или кубические метры.

Интенсивность давления на крыльчатку в различных газах отличается. В связи с этим оборудование калибруется производителем под среду, с которой будет работать. Таким образом, если измеритель скорости рассчитан для природного газа, он не будет давать точные показатели в случае работы с углекислотой. Помимо оборудования для веществ в жидком состоянии, существуют и измерители для газообразной среды, такой как воздух и даже пар.

Скоростемер для воды

Измеритель скорости воды имеет подобную конструкцию, что и для газовой среды. Его используют в исключительных случаях, когда нужно узнать скорость движения водяного потока, а не объем прокачки. Данный показатель является важным при тестировании оборудования для пожаротушения, водяных пушек и в прочих целях. Такой скоростемер представляет собой вытянутую трубку, которая подсоединяется к гибкому шлангу или трубопроводу. Кроме устройств с вращающейся крыльчаткой, снятие показателей может осуществляться лазером или ультразвуковыми волнами.

Классификация скоростей полета.

В аэронавигации различают воздушную и путевую скорости полета.

Воздушная скорость (V) - этоскорость полета ВС относительно воздушной среды. В свою очередь, воздушная скорость подразделяется на:

- приборную (Vпр) – это скорость, которую показывает указатель скорости (УС - 350; УС - 450);

- индикаторную (Vинд) – это приборная скорость, исправленная на величину инструментальной поправки данного указателя скорости;

- истинную (Vи) – это действительная скорость движения воздушного судна, относительно воздушной массы.

Скорость полета является векторной величиной. Для ее определения необходимо знать и модуль, и направление. В общем случае вектор воздушной скорости не совпадает с продольной осью ВС, а несколько отклонен от нее под влиянием угла атаки и угла скольжения ВС.

Это отклонение незначительно и не оказывает существенного влияния на точность решения навигационных задач, поэтому в аэронавигации принято считать, что вектор воздушной скорости совпадает с продольной осью ВС и лежит в горизонтальной плоскости.

Общий принцип измерения воздушной скорости основан на измерении скоростного напора воздуха q. Под скоростным напором понимают разность полного и статического давлений, воспринимаемых приемником воздушных давлений (ПВД) при полете ВС. Скоростной напор q = V 2 /2. Из формулы видно, что он зависит от плотности воздуха на высоте полета и квадрата скорости. По замеренному скоростному потоку можно определить воздушную скорость.

V

Рис. 4. Воздушная скорость полета.

На воздушных судах применяются указатели воздушной скорости двух типов:

Указатель скорости типа УС (УС-250, УС-350);

Комбинированный указатель скорости типа КУС (КУС-730/1100,
КУС-1200 и др.).

Указатели типа УС имеют одну стрелку, указывающую приборную скорость. Указатели типа КУС имеют две стрелки, указывающие приборную и истинную воздушные скорости полета.

Воздушная скорость не зависит от направления и скорости ветра.



Воздушная скорость зависит от летно-технических характеристик ВС и режима работы силовой установки.

Путевая скорость (W) - скорость полета ВС относительно земли. Она зависит от воздушной скорости (V), скорости (U) и направления ветра (δн).

Путевая скорость является результирующей векторного сложения вектора воздушной истинной скорости (V) и вектора ветра (U).

V U

W

Рис. 5. Путевая скорость полета.

5. Погрешности указателя скорости, их учет.

Определение воздушной истинной скорости полета.

Указателю скорости присущи инструментальные, аэродинамические и методические погрешности.

Инструментальные погрешности (ΔVи) . Это погрешности, которые возникают по тем же причинам, что и аналогичные погрешности барометрического высотомера (погрешности оцифровки шкалы, трения в передаточном механизме и т.д.). Они определяются в лабораторных условиях и по результатам проверки составляются таблицы инструментальных поправок, которые помещаются в кабине пилотов.

Аэродинамические погрешности ( Vа ). Это погрешности, которые возникают в результате неточного измерения полного и особенно статического давления в зоне установки ПВД. Они определяются при летных испытаниях ВС и указываются в РЛЭ для каждого типа ВС.

Методические погрешности (ΔVм)Это погрешности, которые возникают вследствие несовпадения фактических условий атмосферы со стандартными условиями, положенными в основу тарировки шкалы указателя скорости. Эти погрешности подразделяются на две группы:

Погрешности от изменения плотности воздуха;

Погрешности от изменения сжимаемости воздуха.

а). Погрешности от изменения плотности воздуха возникают вследствие несовпадения стандартной массовой плотности воздуха на уровне моря

0.125 кгс/м, которая положена в основу тарировки шкалы указателя скорости, с плотностью воздуха на высоте полета.

По мере увеличения высоты, плотность воздуха уменьшается, поэтому показания указателя скорости будут меньше истинной воздушной скорости. В практике методическая поправка на изменение плотности воздуха учитывается с помощью НЛ или расчетом в уме.

б). Погрешности в следствии сжимаемости воздуха возникают
из-за изменения сжимаемости воздуха на высоте полета относительно сжимаемости воздуха на уровне моря, принятой при тарировке шкалы указателя скорости.

На малых скоростях и высотах сжимаемость воздуха незначительна. С увеличением скорости и высоты полета сжимаемость возрастает, что приводит к увеличению плотности воздуха, а следовательно, и скоростного напора, вызывающего завышение показаний указателя скорости.

При расчете истинной воздушной скорости поправку на изменение сжимаемости воздуха алгебраически прибавляют к приборной скорости, а при определении приборной скорости - наоборот.

При скоростях полета до 400 км/ч и высотах до 3000 м поправка на изменение сжимаемости воздуха незначительна и ею можно пренебречь.

Скорость полета . Одна из важнейших характеристик для любого летательного аппарата. Мы все привыкли, что самолет обязательно означает «быстро». Все ассоциации работают только в этом направлении. Скорость многим нравится. Практически любой человек не прочь прокатиться «с ветерком» на своем авто (если, конечно, полиция не помешает 🙂) . И информацию о движении здесь получить несложно. Достаточно взглянуть на спидометр, который механическим или электронным способом соединен с колесом. Скорость вращения колеса дает нам в конечном итоге скорость, с которой автомобиль движется по дороге.

Но а как же быть с самолетом? Нет ведь в воздухе дорог, по которым можно было бы ехать:-). Единственная среда, с которой летательный аппарат контактирует непосредственно - это воздух. Вот от него-то он большую часть информации о своем движении и получает. Что касается конкретно скорости полета, то вполне понятно, что чем быстрее самолет летит, тем сильнее на него давит встречный воздушный поток (скоростной или динамический напор). Отсюда логично было бы определять скорость полета в зависимости от величины этого давления. Так же как, кстати, и с атмосферным давлением и высотой. Ведь чем выше летит самолет, тем атмосферное давление ниже. О высоте, однако, поговорим в одной из следующих статей, а пока на повестке дня скорость полета .

Для сбора и обработки такого рода данных на современных самолетах существуют специальные системы. Одно из названий для них - система воздушных сигналов (СВС) .

Работа датчиков такой системы, собирающих данные для определения скорости полета основана на двух уже почтенного возраста изобретениях. Первое - это трубка Пито . Она изобретена в 1732 году французским ученым А.Пито . Он занимался гидравликой, то есть изучал течение жидкости в трубах. Как известно законы гидравлики при определенных условиях вполне применимы для газов, то есть для воздуха. Его мы в дальнейшем и будем иметь ввиду.

Схема классической трубки Пито

Трубка Пито представляет собой L — образную трубку, один конец которой помещен в скоростной (воздушный:-)) поток. Этот поток в трубке тормозится, создавая в ней избыточное давление, по величине которого и можно судить о скорости потока, то есть по сути дела скорости полета, если эта трубка установлена на летательном аппарате. Вобщем-то принцип достаточно простой:-).

Однако здесь надо не забывать еще об одной важной вещи. Все, что находится внутри земной атмосферы, существует в ней под постоянным атмосферным (статическим) давлением. Мы его практически не ощущаем (если, конечно, все в порядке со здоровьем:-)), но оно есть и так или иначе оказывает влияние практически на все физические процессы, происходящие вокруг нас, то есть на всю нашу жизнь. Прямо как в фильме «ДМБ»:-):

— Видишь суслика?
— Нет…
— И я не вижу… А он — есть!

Если серьезно, то то давление, которое мы получаем при торможении воздушного потока в трубке Пито – это так называемое полное давление . Оно, на самом деле, равно сумме двух других давлений.

Полное давление = динамическое давление (скоростной напор) + статическое давление.

Это, между прочим, упрощенное изложение уравнения Бернулли , того самого ученого, о котором мы уже упоминали в статье о . Все правильно, ведь в обоих статьях мы говорим о газовых потоках, а это стихия любого летательного аппарата:-).

Динамическое давление, его еще называют скоростной напор , это то самое давление, которое и дает нам скорость полета . Статическое давление – это наше незаметное (как суслик:-)) давление. И при измерении скорости его обязательно надо учитывать, ведь оно в разных точках пространства может иметь различные значения, особенно с изменением высоты полета, и тем самым оказывать влияние на величину измеренной скорости полета.

Теперь для простоты понимания приведу пару формул. Именно для простоты понимания, хоть это и не в традициях сайта:-). Итак обзовем (как говорил мой преподаватель по физике) полное давление Р , динамическое — Р 1 , статическое — Р 0 , скорость полета (потока) – V . И еще нам понадобится такой физический параметр, как плотность воздуха ρ . Я думаю все еще со школы помнят, что это такое:-).

Скоростной напор выражается такой формулой Р 1 = ρV²/2.

В итоге мы имеем такое уравнение: Р = Р 0 + Р 1 = Р 0 + ρV²/2

Из него очень просто получить искомую скорость полета: V = √((2(Р — Р 0))/ρ)

Исходя из этого несложного выражения работают все авиационные воздушные (аэродинамические) измерители скорости. Как пример можно привести достаточно простой указатель скорости для малоскоростных самолетов УС-350 .

Указатель скорости УС-350.

Как видите, нам, чтобы определить скорость полета, нужно измерить полное давление потока и статическое давление. Классическая трубка Пито дает только полное давление. Поэтому статику приходится измерять отдельно. Во избежание этого неудобства трубка Пито была усовершенствована.

Это второе изобретение (а точнее усовершенствование) из тех двух, о которых я говорил выше. Его сделал немецкий ученый-физик Людвиг Прандтль , которого даже иногда называют отцом современной аэродинамики. Он объединил измерение полного давления потока и статического давления в одной трубке. Для этого в ней есть одно отверстие в направлении потока для полного давления и ряд отверстий на поверхности, обычно расположенных по кольцу, для статического давления. Оба эти давления обычно отводятся в герметичные емкости, разделенные чувствительной мембраной и уже ее движение передается на стрелочный указатель скорости полета. Вот и все. Все гениальное просто, как известно:-)… Такое устройство называют трубкой Прандтля или Пито-Прандтля . На рисунке: 1 — трубка Прандтля, 2 — воздуховоды, 3 — шкала указателя скорости (УС), 4 — чувствительная мембрана.

Схема работы трубки Прандтля (ПВД).

Работа указателя скорости неплохо показана в этом небольшом ролике.

На современных летательных аппаратах эти устройства получили новое, более простое и правильное название: приемники воздушного давления (ПВД) . Они дают первичные данные в сложный комплекс системы воздушных сигналов. Трубки Пито в чистом виде сейчас практически не применяются. Хотя кое-где в малой авиации они еще встречаются. В комплекте к ним тогда обязательно идут приемники статического давления в виде плиты с рядом отверстий на обшивке летательного аппарата.

Трубка Пито под крылом самолета Cessna 172.

Чаще используются так называемые комбинированные ПВД. Они по конструкции представляют собой типичные трубки Прандтля. Эти устройства обязательно снабжаются мощной системой электрического обогрева, так как небольшие отверстия для замера давлений при обледенении самолета вполне могут быть закупорены льдом, что, конечно, может помешать их корректной работе. На стоянках приемники воздушных давлений закрываются специальными заглушками или чехлами для исключения попадания посторонних предметов и грязи в отверстия.

Типичный ПВД современного самолета.

Приемник воздушного давления на СУ-24М (цифры 1 и 2).

Все данные, выдаваемые ПВД, как я уже говорил, в итоге передаются на стрелки специальных приборов – указателей скорости полета . Они довольно разнообразны, как разнообразны и определения для скоростей полета летательного аппарата. Ведь он передвигается не только относительно земли, но и относительно атмосферы, которая сама по себе среда очень нестабильная.

Итак, скорости летательного аппарата .

Воздушная скорость (самая важная:-)). Она делится на два вида:

Истинная воздушная скорость (True Airspeed (TAS )) и Приборная воздушная скорость (Indicated Airspeed (IAS ))

Приборная скорость – эта та скорость, которую летчик видит в своей кабине на приборе-указателе скорости. Она используется для пилотирования летательного аппарата непосредственно в данный момент времени.

Истинная скорость – это фактическая скорость полета самолета относительно воздуха. Она используется для навигации. Зная ее, например, рассчитывается время прибытия в конечный пункт маршрута и возможные при этом отклонения. Измерить эту скорость обычно невозможно. Она рассчитывается с использованием приборной скорости, давления воздуха и его температуры. При этом учитываются погрешности указателя приборной скорости. Они всегда есть, как у любого измерительного прибора на нашей земле:-). Эти погрешности (или ошибки) бывают:

Инструментальные . Возникают из-за несовершенства и особенностей изготовления самого прибора.

Аэродинамические . Это ошибки, возникающие при замере статического давления. Обусловлены конструкцией самолета, местом расположения датчиков и скоростью полета.

Методические . Эти ошибки обусловлены тем, что каждый указатель скорости рассчитывается и тарируется под определенные условия. В физике такие условия называются нормальными . Это когда атмосферное давление равно 760 мм рт.ст. , а температура воздуха 15° С . Но на самом деле с подъемом на высоту эти условия меняются. Меняется и плотность воздуха и следовательно скорость, которую показывает прибор, то есть приборная. С подъемом на высоту приборная скорость всегда меньше истинной. Они равны только при нормальных атмосферных условиях. Все эти погрешности учитываются в виде поправок при навигационных расчетах.

Путевая скорость (Ground Speed (GS )). Это скорость летательного аппарата относительно земли. Она рассчитывается на основании истинной скорости с учетом скорости ветра и используется при решении навигационных задач.

Крейсерская скорость . При этой скорости величина отношения потребной тяги к скорости полета минимальна. То есть летательный аппарат на этом режиме максимально экономичен при сохранении скорости, достаточной для выполнения задачи. Крейсерская скорость обычно равна 0,7-0,8 от максимальной. На ней выполняются долговременные полеты по маршрутам.

Вот пока, пожалуй, и все. Однако в завершение скажу об одной важной детали. Говоря в этой статье о воздушных потоках и скоростях, мы имели ввиду скорости до 350-400 км/ч. Дело в том, что начиная с этих скоростей проявляется новый эффект воздушного потока – сжимаемость . Она порождает новую методическую ошибку в измерении скорости, которую тоже надо учитывать. Влияние сжимаемости с ростом высоты и скорости полета растет, переходя в эффекты сверхзвука. Но скорость полета на сверхзвуке, трубка Пито на этом режиме и другие приборы измерения скорости — это уже тема следующей статьи…

До новых встреч:-)…

P.S. В заключении предлагаю вам посмотреть дополнительный ролик, рассказывающий о трубках Пито и Прандтля.

Полет самолета характеризуется рядом параметров одним, из которых является скорость.

Скорость полета самолета можно измерить по отношению к воздушной среде или относительно Земли, причем можно рассматривать как горизонтальную, так и вертикальную составляющие скорости. Различают следующие скорости полета: истинную воздушную, приборную, путевую и вертикальную.

Истинной воздушной скоростью называется скорость движения самолета относительно воздушных масс.

Приборной (индикаторной) скоростью называется истинная воздушная скорость, приведенная к нормальной плотности воздуха. Если полет происходит при нормальной плотности воздуха (ρ = 1,225 кг/м 3 ), то приборная скорость совпадает с истинной.

Путевой скоростью называется горизонтальная составляющая скорости движения самолета относительно Земли. Путевая скорость равна геометрической сумме горизонтальных составляющих истинной воздушной скорости и скорости ветра.

Вертикальной скоростью называют вертикальную составляющую скорости движения самолета относительно Земли.

Приборная (индикаторная) скорость позволяет с определенной точностью судить о величине скоростного напора в полете, от величины которого зависят аэродинамические силы, действующие на самолет, характеристики устойчивости и управляемости и главное – минимальная безопасная скорость полета. Т.е., информация о величине приборной скорости необходима летчику для пилотирования. Информация об истинной воздушной и путевой скоростях требуется для решения задач самолетовождения.

На самолетах уходящего поколения высотно-скоростные параметры представлялись летчику на приборах, конструктивно совмещавших измерительную и индикаторную части. Приборы, чаще всего, состояли из датчика и указателя, размещенных или в одном корпусе, или соединенных между собой дистанционной передачей. Датчик измерял и преобразовывал информацию в электрический сигнал, а указатель представлял ее на лицевой панели прибора.

На современных ВС, где отображение полетной информации производится на экранах многофункциональных дисплеев, традиционное понимание приборов, как измерительных устройств с отображением информации, уходит в прошлое. На их место приходят информационные комплексы высотно-скоростных параметров (ИК ВСП). ИК ВСП принимает и измеряет необходимый параметр (в нашем случае – скорость), преобразует его в сигнал “удобный” для восприятия вычислительной системой самолетовождения (ВСС). ВСС , в свою очередь, решает задачи по обработке и передаче информации о том или ином параметре (скорости, высоте и т.д.) на индикацию и в системы которые в этой информации нуждаются.

Изменение формы решения задачи индикации высотно-скоростных параметров, тем не менее, не отменяет методов их измерения.

    1. Методы измерения скорости полета

К основным методам измерения скорости относятся:

    аэрометрический метод, основан на измерении скоростного (динамического) напора воздуха, функционально связанного со скоростью полета;

    доплеровский метод измерения скорости полета, который сводится к измерению доплеровского сдвига частот отраженного от земли радиосигнала;

    инерциальный метод, основан на измерении ускорений и однократном интегрировании полученных сигналов. При этом соответствующие составляющие ускорения движения самолета определяются с помощью акселерометров (датчиков измерения ускорений). Этот метод позволяет определять, помимо путевой скорости, координаты местонахождения самолета, истинный курс, путевой угол и ряд других параметров. Инерциальный метод нашел самое широкое применение в авиации, прежде всего, для решений вопросов навигации, для определения местоположения самолета – в инерциальных навигационных системах и будет рассмотрен ниже.

Для решения же задач пилотирования и самолетовождения (частично) вышеперечисленные виды скоростей определяются ИУ, в основу построения которых положены первые два метода измерения, а именно барометрический и доплеровский. Причем первый из них имеет главенствующее значение. Аэрометрические давления к ним подводятся от приемников воздушных давлений (ПВД).

      Приемники воздушных давлений

Для правильного функционирования пилотажно-навигационных ИУ, основанных на измерении параметров встречного потока воздуха, к ним необходимо подвести полное и статическое давления, что осуществляется через ПВД, расположенные вне самолета. Такой приемник представляет собой совокупность двух концентрических трубок (рис.10.1). Внутренняя трубка открыта с торца навстречу потоку и служит для восприятия давления воздуха при полном торможении, т. е. с помощью этой трубки получают полное давление р п . Внешняя трубка с торца закрыта, но имеет ряд отверстий на боковой поверхности. Эти отверстия должны располагаться в зоне неискаженного статического давления.

Рис. 10.1. Принципиальная схема приемника полного и статического давлений

Приемник полного давления выполняется в виде трубки, направленной открытым концом навстречу воздушному потоку (рис. 10.2) .

Приемники статического давления исполняются в следующих вариантах:

а) в виде отверстий, расположенных на поверхности фюзеляжа самолета в таких точках, где давление равно статическому; при этом для повышения жесткости обшивки фюзеляжа на ней располагаются плиты со статическими отверстиями, соединенными внутри самолета с трубопроводами, подводящими статическое давление к соответствующим приборам;

б) в виде укрепленного на крыле или фюзеляже самолета вытянутого цилиндра, ось которого направлена вдоль воздушного потока, а на поверхности, в точках, где давление равно статическому, сделаны отверстия.

Рис. 10.2. Приемник полного давления:

1 – камера; 2 – козырек; 3 – дренажное отверстие; 4 – корпус; 5 – обогревательный элемент; 6 – трубка; 7, 8 – соединительные провода; 9 – камера; 10 – штепсельный разъем; 11 – штуцер, 12 – трубопровод; 13 – фланец; 14 – прокладка

На рис. 10.3 показан вариант ПВД, принимающего как статическое, так и полное давления. На поверхности цилиндра имеется утолщение – компенсирующий контур (аэродинамический компенсатор), имеющее форму двух встречных конусов и предназначенное для выравнивания статического давления на поверхности контура при определенных режимах полета.

Внутри приемника имеются три герметичные камеры, сообщающиеся с расположенными на поверхности приемника отверстиямиС 1 , С 2 и С 3 и выведенные соответственно на штуцера 1, 2 и 3. Кроме того, в передней части приемника

Рис. 10.3. Приемник воздушного давления (ПВД) с компенсирующим контуром

имеется центральное отверстие П, воспринимающее полное давление, выведенное на штуцер4.

Особенностью данного типа ПВД является то, что при полете с дозвуковой скоростью давление в камере С 3 близко к статическому, а в камерах C 1 и С 2 значительно отличается от него; при полете же со сверхзвуковой скоростью давление в камере С 3 значительно отличается от статического, но при этом давления в камерах С 1 и С 2 близки к статическому. Поэтому при полете на дозвуковых скоростях используется камера С 3 , а на сверхзвуковых скоростях – камера С 1 или С 2 . Перевод магистрали статического давления на питание от той или другой камеры производится автоматически с помощью пневматического переключателя, срабатывающего при переходе скорости через скорость звука.

Точность воспроизведения статического давления зависит от геометрической формы и размеров компенсирующего контура (углов α, β и диаметра D ), а также от расстояния между приемником и самолетом. Поэтому приемники выпускаются в различных модификациях, отличающихся величинами α, β, D, кроме того, подбирается оптимальное расстояние между ПВД и самолетом.

На больших самолетах, в целях повышения надежности, устанавливают несколько приемников полного и статического давлений.

Скорость полета самолета измеряют относительно воздушного потока и относительно поверхности земли. Причем рассматривают как горизонтальную, так и вертикальную составляющие скорости.

Различают истинную воздушную скорость - ско­рость полета самолета относительно воздушного потока, индикаторную (приборную) скорость - скорость полета самолета относительно воздушного потока у земли при таком же динамическом давлении (скоростном напоре) как на данной высоте, и путевую скорость - скорость полета самолета относительно поверхности земли.

Безразмерной характеристикой скорости полета самолета является число М, равное отношению истинной воздушной скорости к скорости звука.

Известно несколько методов измерения скорости полета самолета: аэродинамический, доплеровский и инерциальный.

Аэродинамический метод измерения скорости полета основан на измерении динамического давления скоростного напора воздуха, функционально связанного со скоростью полета.

Доплеровский метод измерения скорости полета сводится к измерению разности частот радиосигналов излучаемого к земной поверхности и отраженного от нее.

Инерциальный метод измерения скорости основан на измерении ускорений и однократном интегрировании полученных сигналов.

Доплеровский и инерциальный методы применяются для измерения путевой скорости.

Комбинированные указатели скорости. Измерение истинной воздушной Vист и приборной (индикаторной) Vnp (V i) скоростей осуществляется анероидно-манометрическими приборами.

В основу принципа действия этих приборов положено измерение динамического давления.

При полете со скоростями, не превышающими 400 км/ч, динамическое давление р д, равное разности полного и статического р н давлений, пропорционально воздушной скорости полета V:

Р д = Р п - Р Н = ρ н V 2 ист: 2=ρ 0 V 2 0: 2

где р 0 , р н - плотности воздушной среды у земли и на высоте Н.

Приборы для измерения скорости полета называются указателями скорости. Они делятся на следующие типы:



Указатели приборной скорости;

Указатели истинной воздушной скорости.

Наряду с указателем истинной воздушной скорости применяется указатель числа М. Этот прибор показывает значение истинной воздушной скорости в относительных единицах (по отношению к скорости звука).

Указатель приборной скорости (УС) применяется в качестве пилотажного прибора.

Принцип действия его основан на измерении динамического давления встречного потока воздуха с помощью манометрической коробки, деформация которой передается на стрелку специальным механизмом.

Таким образом, указатель индикаторной скорости измеряет скоростной напор Δр = ρV 2 /2g , зависящий не только от скорости полета, но и от плотности воздуха.

Этот прибор будет показывать истинную воздушную скорость только на той высоте, на которой производилась его градуировка. Обычно указатель индикаторной скорости градуируется при нормальной плотности воздуха у --1,225 кг/м 3 , поэтому показания прибора будут соответствовать истинной воздушной скорости при полете у земли.

Аэродинамические силы, действующие на самолет в полете, также пропорциональны скоростному напору. Например, величина подъемной силы выражается формулой

Y=C y S ρV 2 /2g

Где: С у - коэффициент подъемной силы;

S - площадь несущих поверхностей.

Для поддержания требуемого режима полета важно знать не истинную воздушную скорость, а индикаторную скорость полета. Следовательно, по указателю приборной скорости легко выдерживать нужные режимы полета.

Приборы измерения скорости по существу дает информацию о подъемной силе самолета на любой высоте полета, что особенно важно знать тогда, когда подъемная сила приближается к критическому значению.

Указатель истинной воздушной скорости (ИВС) предназначен для измерения истинной воздушной скорости полета. Его принцип действия, так же как и указателя приборной скорости, основан на измерении динамического давления встречного потока воздуха. Отличие состоит в том, что в указателе ИВС измеряется также и статическое давление. В нем совмещены два прибора - указатель индикаторной скорости и указатель истинной воздушной скорости.

Прибор имеет единую шкалу и две стрелки, одна из которых (широкая) показывает приборную скорость, а другая (узкая) - истинную воздушную скорость.

Применяемые на самолетах измерители скоростей представляют собой комбинированные приборы, одновременно указывающие как истинную, так и приборную скорости полета.

Комбинированный указатель скорости типа КУС устроен следующим образом. Внутри герметического корпуса раз­мещены манометрическая 6 и анероидная 5 коробки. Внутренняя полость манометрической коробки соединена с самолетной системой полного давления, а внутренний объем корпуса прибора с

си­стемой статического давления. Внутри корпуса смонтированы механизмы истинной и приборной скоростей, которые работают от общего чувствительного элемента - манометрической коробки.

Кинематическая схема комбинированного указателя скорости:

1 - стрелка истинной воздушной скорости; 2 - стрелка приборной скорости; 3, 11 - зубчатые секторы; 4, 7, 8, 10 - поводки; 5 - анероидная коробка; 6 - манометриче­ская коробка; 9, 12 - трибки

Под действием разностного, т. е. динамического давления Р д = Р п - Р с, манометрическая коробка деформируется. Ли­нейное перемещение ее подвижного центра с помощью тяги, ocи М, поводков 7 и 8, сектора 3 и трибки 9 преобразуется в пово­ротное движение широкой стрелки 2, указывающей приборную скорость полета, т. е. скорость без учета сжимаемости воздуха и изменения его плотности на высоте полета.

Для измерения Vист необходимо учитывать изменения плотности воздушной среды. С этой целью в приборе предусмотрен специальный механизм, чувствительным элементом которого служит анероидная коробка. При изменении статического давления внутри прибора анероидная коробка деформируется.

Линейное перемещение подвижного центра при помощи тяги и оси А передается на поводок 4 и вызывает изменение передаточного отношения между осями М и А. Поскольку на ось И передается угловое перемещение, пропорциональное Vnp, а через поводок 4 - перемещение, пропорциональное изменению плотности, ее поворот прс исходит на угол, соответствующий V ист. Это перемещение с по мощью поводков 10, сектора 11 и трибки 12 преобразуется в поворотное движение узкой стрелки 1, указывающей по шкале истинную воздушную скорость V ист.

Указатель числа М.

Прибор, с помощью которого измеряется число М полета, называется указателем числа М. Существующие указатели числа М основаны на измерении отношения динамического давления Δр воздуха к статическому давлению р ст.

Число М является функцией отношения динамического давления к статическому, независимо от температуры воздуха.

Для указателя числа М нужна схема, аналогичная схеме указателя истинной воздушной скорости, но без элемента, учитывающего температуру воздуха.

Публикации по теме